Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387008342> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4387008342 abstract "Abstract Background Assessment of thyroid nodules histopathology using AI is crucial for an accurate diagnosis. This systematic review analyzes recent works employing deep learning approaches for classifying thyroid nodules based on histopathology images, evaluating their performance, and identifying limitations. Methods Eligibility criteria focused on peer-reviewed English papers published in the last five years, applying deep learning to categorize thyroid histopathology images. The PubMed database was searched using relevant keyword combinations. Results Out of 103 articles, 11 studies met inclusion criteria. They used convolutional neural networks to classify thyroid neoplasm. Most studies aimed at basic tumor subtyping; however, three studies targeted the prediction of tumor-associated mutation. Accuracy ranged from 77% to 100%, with most over 90%. Discussion The findings from our analysis reveal the effectiveness of deep learning in identifying discriminative morphological patterns from histopathology images, thus enhancing the accuracy of thyroid nodule histopathological classification. Key limitations were small sample sizes, subjective annotation, and limited dataset diversity. Further research with larger diverse datasets, model optimization, and real-world validation is essential to translate these tools into clinical practice. Other Funding This study did not receive any funding. Registration The procedural instructions for this systematic review were officially recorded within the PROSPERO database under registration number RD42023457854 https://www.crd.york.ac.uk/Prospero/" @default.
- W4387008342 created "2023-09-26" @default.
- W4387008342 creator A5009511389 @default.
- W4387008342 creator A5076549536 @default.
- W4387008342 date "2023-09-25" @default.
- W4387008342 modified "2023-10-12" @default.
- W4387008342 title "Trends in AI-powered classification of thyroid neoplasms based on histopathology images, a systematic review." @default.
- W4387008342 cites W2035386760 @default.
- W4387008342 cites W2275831367 @default.
- W4387008342 cites W2811326614 @default.
- W4387008342 cites W2970985632 @default.
- W4387008342 cites W2980106179 @default.
- W4387008342 cites W3001491360 @default.
- W4387008342 cites W3037070813 @default.
- W4387008342 cites W3047859491 @default.
- W4387008342 cites W3082403756 @default.
- W4387008342 cites W3112795522 @default.
- W4387008342 cites W3118615836 @default.
- W4387008342 cites W3138973186 @default.
- W4387008342 cites W3160765804 @default.
- W4387008342 cites W3189996993 @default.
- W4387008342 cites W3199584984 @default.
- W4387008342 cites W4205183402 @default.
- W4387008342 cites W4226002157 @default.
- W4387008342 cites W4286209660 @default.
- W4387008342 cites W4286632085 @default.
- W4387008342 cites W4318042571 @default.
- W4387008342 cites W4323809649 @default.
- W4387008342 cites W4323841931 @default.
- W4387008342 cites W4362511463 @default.
- W4387008342 cites W4385400118 @default.
- W4387008342 cites W4386001070 @default.
- W4387008342 doi "https://doi.org/10.1101/2023.09.24.23295995" @default.
- W4387008342 hasPublicationYear "2023" @default.
- W4387008342 type Work @default.
- W4387008342 citedByCount "0" @default.
- W4387008342 crossrefType "posted-content" @default.
- W4387008342 hasAuthorship W4387008342A5009511389 @default.
- W4387008342 hasAuthorship W4387008342A5076549536 @default.
- W4387008342 hasBestOaLocation W43870083421 @default.
- W4387008342 hasConcept C119857082 @default.
- W4387008342 hasConcept C126322002 @default.
- W4387008342 hasConcept C142724271 @default.
- W4387008342 hasConcept C154945302 @default.
- W4387008342 hasConcept C19527891 @default.
- W4387008342 hasConcept C199360897 @default.
- W4387008342 hasConcept C2779022025 @default.
- W4387008342 hasConcept C41008148 @default.
- W4387008342 hasConcept C526584372 @default.
- W4387008342 hasConcept C544855455 @default.
- W4387008342 hasConcept C71924100 @default.
- W4387008342 hasConcept C81363708 @default.
- W4387008342 hasConcept C83852419 @default.
- W4387008342 hasConcept C94124525 @default.
- W4387008342 hasConceptScore W4387008342C119857082 @default.
- W4387008342 hasConceptScore W4387008342C126322002 @default.
- W4387008342 hasConceptScore W4387008342C142724271 @default.
- W4387008342 hasConceptScore W4387008342C154945302 @default.
- W4387008342 hasConceptScore W4387008342C19527891 @default.
- W4387008342 hasConceptScore W4387008342C199360897 @default.
- W4387008342 hasConceptScore W4387008342C2779022025 @default.
- W4387008342 hasConceptScore W4387008342C41008148 @default.
- W4387008342 hasConceptScore W4387008342C526584372 @default.
- W4387008342 hasConceptScore W4387008342C544855455 @default.
- W4387008342 hasConceptScore W4387008342C71924100 @default.
- W4387008342 hasConceptScore W4387008342C81363708 @default.
- W4387008342 hasConceptScore W4387008342C83852419 @default.
- W4387008342 hasConceptScore W4387008342C94124525 @default.
- W4387008342 hasLocation W43870083421 @default.
- W4387008342 hasOpenAccess W4387008342 @default.
- W4387008342 hasPrimaryLocation W43870083421 @default.
- W4387008342 hasRelatedWork W1462775415 @default.
- W4387008342 hasRelatedWork W1535483699 @default.
- W4387008342 hasRelatedWork W1987896487 @default.
- W4387008342 hasRelatedWork W2068445477 @default.
- W4387008342 hasRelatedWork W2333832190 @default.
- W4387008342 hasRelatedWork W2391332606 @default.
- W4387008342 hasRelatedWork W2396009657 @default.
- W4387008342 hasRelatedWork W2799110842 @default.
- W4387008342 hasRelatedWork W3032826521 @default.
- W4387008342 hasRelatedWork W4229853287 @default.
- W4387008342 isParatext "false" @default.
- W4387008342 isRetracted "false" @default.
- W4387008342 workType "article" @default.