Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387008398> ?p ?o ?g. }
- W4387008398 abstract "Abstract Computer-aided systems can help the ophthalmologists in early detection of most of ocular abnormalities using retinal OCT images. The need for more accurate diagnosis increases the need for modifications and innovations to current algorithms. In this paper, we investigate the effect of different X-lets on the classification of OCT B-scans of a dataset with one normal class and two abnormal classes. Different transforms of each B-scan have been fed to the designed 2D-Convolutional-Neural-Network (2D-CNN) to extract the best-suited features. We compare the performance of them with MSVM and MLP classifiers. Comparison with the accuracy of normal and abnormal classes reveals substantially better results for normal cases using 2D-Discrete-Wavelet-Transform (2D-DWT), since the structure of most normal B-scans follows a pattern with zero-degree lines, while for abnormalities with circles appearing in the retinal structure (due to the accumulation of fluid), the circlet transform performs much better. Therefore, we combine these two X-lets and propose a new transform named CircWave which uses all sub-bands of both transformations in the form of a multi-channel-matrix, with the aim to increase the classification accuracy of normal and abnormal cases, simultaneously. We show that the classification results obtained based on CircWave transform outperform those based on the original images and each individual transform. Furthermore, the Grad-CAM class activation visualization for B-scans reconstructed from half of the CircWave sub-bands indicates a greater focus on appearing circles in abnormal cases and straight lines in normal cases at the same time, while for original B-scans the focus of the heat-map is on some irrelevant regions. To investigate the generalizability of our proposed method we have applied it also to another dataset. Using the CircWave transform, we have obtained an accuracy of 94.5% and 90% for the first and second dataset, respectively, while these values were 88% and 83% using the original images. The proposed CNN based on CircWave provides not only superior evaluation parameter values but also better interpretable results with more focus on features that are important for ophthalmologists." @default.
- W4387008398 created "2023-09-26" @default.
- W4387008398 creator A5052490368 @default.
- W4387008398 creator A5054867638 @default.
- W4387008398 creator A5059739223 @default.
- W4387008398 creator A5066302879 @default.
- W4387008398 creator A5070153311 @default.
- W4387008398 date "2023-09-25" @default.
- W4387008398 modified "2023-09-30" @default.
- W4387008398 title "CircWaveNet: A New Conventional Neural Network Based on Combination of Circlets and Wavelets for Macular OCT Classification" @default.
- W4387008398 cites W1995663818 @default.
- W4387008398 cites W2018332268 @default.
- W4387008398 cites W2106002835 @default.
- W4387008398 cites W2547944663 @default.
- W4387008398 cites W2584959338 @default.
- W4387008398 cites W2620915497 @default.
- W4387008398 cites W2780099243 @default.
- W4387008398 cites W2783507708 @default.
- W4387008398 cites W2897821359 @default.
- W4387008398 cites W2911825872 @default.
- W4387008398 cites W2914016683 @default.
- W4387008398 cites W2916845318 @default.
- W4387008398 cites W2921275416 @default.
- W4387008398 cites W2930750247 @default.
- W4387008398 cites W2946556041 @default.
- W4387008398 cites W2954870938 @default.
- W4387008398 cites W2958390804 @default.
- W4387008398 cites W2964331958 @default.
- W4387008398 cites W2965743638 @default.
- W4387008398 cites W2966909379 @default.
- W4387008398 cites W2971327321 @default.
- W4387008398 cites W2997662364 @default.
- W4387008398 cites W3007943565 @default.
- W4387008398 cites W3013827277 @default.
- W4387008398 cites W3025189310 @default.
- W4387008398 cites W3026821223 @default.
- W4387008398 cites W3034750607 @default.
- W4387008398 cites W3035267940 @default.
- W4387008398 cites W3036138508 @default.
- W4387008398 cites W3047446736 @default.
- W4387008398 cites W3092654263 @default.
- W4387008398 cites W3153036925 @default.
- W4387008398 cites W3161216311 @default.
- W4387008398 cites W4200469286 @default.
- W4387008398 cites W4210687259 @default.
- W4387008398 cites W4211090999 @default.
- W4387008398 cites W4220707348 @default.
- W4387008398 cites W4224230751 @default.
- W4387008398 cites W4280596516 @default.
- W4387008398 cites W4296551003 @default.
- W4387008398 cites W4308235959 @default.
- W4387008398 cites W4315864755 @default.
- W4387008398 cites W4318833491 @default.
- W4387008398 cites W4320919976 @default.
- W4387008398 doi "https://doi.org/10.1101/2023.09.23.23295997" @default.
- W4387008398 hasPublicationYear "2023" @default.
- W4387008398 type Work @default.
- W4387008398 citedByCount "0" @default.
- W4387008398 crossrefType "posted-content" @default.
- W4387008398 hasAuthorship W4387008398A5052490368 @default.
- W4387008398 hasAuthorship W4387008398A5054867638 @default.
- W4387008398 hasAuthorship W4387008398A5059739223 @default.
- W4387008398 hasAuthorship W4387008398A5066302879 @default.
- W4387008398 hasAuthorship W4387008398A5070153311 @default.
- W4387008398 hasBestOaLocation W43870083981 @default.
- W4387008398 hasConcept C115961682 @default.
- W4387008398 hasConcept C120665830 @default.
- W4387008398 hasConcept C121332964 @default.
- W4387008398 hasConcept C153180895 @default.
- W4387008398 hasConcept C154945302 @default.
- W4387008398 hasConcept C192209626 @default.
- W4387008398 hasConcept C196216189 @default.
- W4387008398 hasConcept C2777212361 @default.
- W4387008398 hasConcept C36464697 @default.
- W4387008398 hasConcept C41008148 @default.
- W4387008398 hasConcept C46286280 @default.
- W4387008398 hasConcept C47432892 @default.
- W4387008398 hasConcept C75294576 @default.
- W4387008398 hasConcept C81363708 @default.
- W4387008398 hasConceptScore W4387008398C115961682 @default.
- W4387008398 hasConceptScore W4387008398C120665830 @default.
- W4387008398 hasConceptScore W4387008398C121332964 @default.
- W4387008398 hasConceptScore W4387008398C153180895 @default.
- W4387008398 hasConceptScore W4387008398C154945302 @default.
- W4387008398 hasConceptScore W4387008398C192209626 @default.
- W4387008398 hasConceptScore W4387008398C196216189 @default.
- W4387008398 hasConceptScore W4387008398C2777212361 @default.
- W4387008398 hasConceptScore W4387008398C36464697 @default.
- W4387008398 hasConceptScore W4387008398C41008148 @default.
- W4387008398 hasConceptScore W4387008398C46286280 @default.
- W4387008398 hasConceptScore W4387008398C47432892 @default.
- W4387008398 hasConceptScore W4387008398C75294576 @default.
- W4387008398 hasConceptScore W4387008398C81363708 @default.
- W4387008398 hasLocation W43870083981 @default.
- W4387008398 hasOpenAccess W4387008398 @default.
- W4387008398 hasPrimaryLocation W43870083981 @default.
- W4387008398 hasRelatedWork W1577789985 @default.
- W4387008398 hasRelatedWork W1994967090 @default.
- W4387008398 hasRelatedWork W2047056993 @default.
- W4387008398 hasRelatedWork W2112061901 @default.