Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387008632> ?p ?o ?g. }
- W4387008632 endingPage "8" @default.
- W4387008632 startingPage "1" @default.
- W4387008632 abstract "ABSTRACTAutomatic speech recognition (ASR) is an emerging technology that has been used in recognizing non-typical speech of people with speech impairment and enhancing the language sample transcription process in communication sciences and disorders. However, the feasibility of using ASR for recognizing speech samples from high-tech Augmentative and Alternative Communication (AAC) systems has not been investigated. This proof-of-concept paper aims to investigate the feasibility of using AAC-ASR to transcribe language samples generated by high-tech AAC systems and compares the recognition accuracy of two published ASR models: CMU Sphinx and Google Speech-to-text. An AAC-ASR model was developed that transcribes simulated AAC speaker language samples. The AAC-ASR model’s word error rate (WER) was compared with those of CMU Sphinx and Google Speech-to-text. The WER of the AAC-ASR model outperformed (28.6%) compared with CMU Sphinx and Google when tested on the testing files (70.7% and 86.2% retrospectively). Our results demonstrate the feasibility of using the ASR model to automatically transcribe high-technology AAC-simulated language samples to support language sample analysis. Future steps will focus on developing the model with diverse AAC speech training datasets and understanding the speech patterns of individual AAC users to refine the AAC-ASR model.KEYWORDS: Augmentative and Alternative CommunicationLanguage Sample AnalysisSpeech RecognitionDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThe first author created the simulated data set at the State University of New York in Fredonia. We thank Vaneiqua Wilson for transcribing the simulated data for developing the AAC-ASR model, and Zoe Nelson and Jenna O’Donnell for assisting the manuscript preparation.Declaration of interestThe authors report that there are no competing interests to declare.Data Availability StatementThe data that support the findings of this study are available from the corresponding author, SKC, upon reasonable request." @default.
- W4387008632 created "2023-09-26" @default.
- W4387008632 creator A5003800208 @default.
- W4387008632 creator A5004566731 @default.
- W4387008632 creator A5037904428 @default.
- W4387008632 date "2023-09-25" @default.
- W4387008632 modified "2023-10-16" @default.
- W4387008632 title "A proof-of-concept study for Automatic speech recognition to transcribe AAC speakers’ speech from high-technology AAC systems." @default.
- W4387008632 cites W2000428399 @default.
- W4387008632 cites W2004858767 @default.
- W4387008632 cites W2045110432 @default.
- W4387008632 cites W2047862721 @default.
- W4387008632 cites W2119613051 @default.
- W4387008632 cites W2121649056 @default.
- W4387008632 cites W2148292321 @default.
- W4387008632 cites W2154987114 @default.
- W4387008632 cites W2403044103 @default.
- W4387008632 cites W2471087218 @default.
- W4387008632 cites W2508777706 @default.
- W4387008632 cites W2566204668 @default.
- W4387008632 cites W2596075132 @default.
- W4387008632 cites W2744487861 @default.
- W4387008632 cites W2759753338 @default.
- W4387008632 cites W2797303992 @default.
- W4387008632 cites W2889469831 @default.
- W4387008632 cites W2919448139 @default.
- W4387008632 cites W2936861580 @default.
- W4387008632 cites W2952698673 @default.
- W4387008632 cites W2953740025 @default.
- W4387008632 cites W2964539095 @default.
- W4387008632 cites W2981859382 @default.
- W4387008632 cites W3007876602 @default.
- W4387008632 cites W3014294651 @default.
- W4387008632 cites W3087246835 @default.
- W4387008632 cites W3160528423 @default.
- W4387008632 cites W3194191636 @default.
- W4387008632 cites W3197150384 @default.
- W4387008632 cites W3197674197 @default.
- W4387008632 cites W3197712601 @default.
- W4387008632 cites W3210043497 @default.
- W4387008632 cites W4205130185 @default.
- W4387008632 cites W4214599934 @default.
- W4387008632 cites W4221147660 @default.
- W4387008632 cites W4224315877 @default.
- W4387008632 cites W4230603309 @default.
- W4387008632 cites W4242423440 @default.
- W4387008632 doi "https://doi.org/10.1080/10400435.2023.2260860" @default.
- W4387008632 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37748185" @default.
- W4387008632 hasPublicationYear "2023" @default.
- W4387008632 type Work @default.
- W4387008632 citedByCount "0" @default.
- W4387008632 crossrefType "journal-article" @default.
- W4387008632 hasAuthorship W4387008632A5003800208 @default.
- W4387008632 hasAuthorship W4387008632A5004566731 @default.
- W4387008632 hasAuthorship W4387008632A5037904428 @default.
- W4387008632 hasBestOaLocation W43870086321 @default.
- W4387008632 hasConcept C137293760 @default.
- W4387008632 hasConcept C138885662 @default.
- W4387008632 hasConcept C142362112 @default.
- W4387008632 hasConcept C14999030 @default.
- W4387008632 hasConcept C153349607 @default.
- W4387008632 hasConcept C179926584 @default.
- W4387008632 hasConcept C185592680 @default.
- W4387008632 hasConcept C198531522 @default.
- W4387008632 hasConcept C204321447 @default.
- W4387008632 hasConcept C2777299493 @default.
- W4387008632 hasConcept C2778121785 @default.
- W4387008632 hasConcept C28490314 @default.
- W4387008632 hasConcept C41008148 @default.
- W4387008632 hasConcept C41895202 @default.
- W4387008632 hasConcept C43617362 @default.
- W4387008632 hasConcept C504749915 @default.
- W4387008632 hasConceptScore W4387008632C137293760 @default.
- W4387008632 hasConceptScore W4387008632C138885662 @default.
- W4387008632 hasConceptScore W4387008632C142362112 @default.
- W4387008632 hasConceptScore W4387008632C14999030 @default.
- W4387008632 hasConceptScore W4387008632C153349607 @default.
- W4387008632 hasConceptScore W4387008632C179926584 @default.
- W4387008632 hasConceptScore W4387008632C185592680 @default.
- W4387008632 hasConceptScore W4387008632C198531522 @default.
- W4387008632 hasConceptScore W4387008632C204321447 @default.
- W4387008632 hasConceptScore W4387008632C2777299493 @default.
- W4387008632 hasConceptScore W4387008632C2778121785 @default.
- W4387008632 hasConceptScore W4387008632C28490314 @default.
- W4387008632 hasConceptScore W4387008632C41008148 @default.
- W4387008632 hasConceptScore W4387008632C41895202 @default.
- W4387008632 hasConceptScore W4387008632C43617362 @default.
- W4387008632 hasConceptScore W4387008632C504749915 @default.
- W4387008632 hasLocation W43870086321 @default.
- W4387008632 hasLocation W43870086322 @default.
- W4387008632 hasOpenAccess W4387008632 @default.
- W4387008632 hasPrimaryLocation W43870086321 @default.
- W4387008632 hasRelatedWork W116652514 @default.
- W4387008632 hasRelatedWork W2186688931 @default.
- W4387008632 hasRelatedWork W2348779766 @default.
- W4387008632 hasRelatedWork W2356192947 @default.
- W4387008632 hasRelatedWork W2389032213 @default.
- W4387008632 hasRelatedWork W2537969829 @default.