Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387010034> ?p ?o ?g. }
- W4387010034 abstract "Data on the emotionality of words is important for the selection of experimental stimuli and sentiment analysis on large bodies of text. While norms for valence and arousal have been thoroughly collected in English, most languages do not have access to such large datasets. Moreover, theoretical developments lead to new dimensions being proposed, the norms for which are only partially available. In this paper, we propose a transformer-based neural network architecture for semantic and emotional norms extrapolation that predicts a whole ensemble of norms at once while achieving state-of-the-art correlations with human judgements on each. We improve on the previous approaches with regards to the correlations with human judgments by Δr = 0.1 on average. We precisely discuss the limitations of norm extrapolation as a whole, with a special focus on the introduced model. Further, we propose a unique practical application of our model by proposing a method of stimuli selection which performs unsupervised control by picking words that match in their semantic content. As the proposed model can easily be applied to different languages, we provide norm extrapolations for English, Polish, Dutch, German, French, and Spanish. To aid researchers, we also provide access to the extrapolation networks through an accessible web application." @default.
- W4387010034 created "2023-09-26" @default.
- W4387010034 creator A5063273007 @default.
- W4387010034 creator A5083326050 @default.
- W4387010034 date "2023-09-25" @default.
- W4387010034 modified "2023-09-27" @default.
- W4387010034 title "Extrapolation of affective norms using transformer-based neural networks and its application to experimental stimuli selection" @default.
- W4387010034 cites W1964081251 @default.
- W4387010034 cites W1974991592 @default.
- W4387010034 cites W1979532929 @default.
- W4387010034 cites W1989192652 @default.
- W4387010034 cites W1989847457 @default.
- W4387010034 cites W1999081314 @default.
- W4387010034 cites W1999609000 @default.
- W4387010034 cites W2013536305 @default.
- W4387010034 cites W2013871535 @default.
- W4387010034 cites W2023736093 @default.
- W4387010034 cites W2028742638 @default.
- W4387010034 cites W2031049446 @default.
- W4387010034 cites W2043632943 @default.
- W4387010034 cites W2045096378 @default.
- W4387010034 cites W2048795844 @default.
- W4387010034 cites W2051695946 @default.
- W4387010034 cites W2051857507 @default.
- W4387010034 cites W2054566922 @default.
- W4387010034 cites W2055706967 @default.
- W4387010034 cites W2069143585 @default.
- W4387010034 cites W2074739635 @default.
- W4387010034 cites W2082092349 @default.
- W4387010034 cites W2088572966 @default.
- W4387010034 cites W2115098571 @default.
- W4387010034 cites W2124217660 @default.
- W4387010034 cites W2132683166 @default.
- W4387010034 cites W2167557160 @default.
- W4387010034 cites W2250508463 @default.
- W4387010034 cites W2290759784 @default.
- W4387010034 cites W2434184590 @default.
- W4387010034 cites W2488021640 @default.
- W4387010034 cites W2502534556 @default.
- W4387010034 cites W2512194521 @default.
- W4387010034 cites W2513026920 @default.
- W4387010034 cites W2559779584 @default.
- W4387010034 cites W2798357113 @default.
- W4387010034 cites W2886186188 @default.
- W4387010034 cites W2902591385 @default.
- W4387010034 cites W2902888400 @default.
- W4387010034 cites W2944851425 @default.
- W4387010034 cites W2952638691 @default.
- W4387010034 cites W2965210982 @default.
- W4387010034 cites W2981925679 @default.
- W4387010034 cites W2997049449 @default.
- W4387010034 cites W2997159780 @default.
- W4387010034 cites W3046437464 @default.
- W4387010034 cites W3085332162 @default.
- W4387010034 cites W3092131673 @default.
- W4387010034 cites W3099236585 @default.
- W4387010034 cites W3164401243 @default.
- W4387010034 cites W3173298044 @default.
- W4387010034 cites W3203904456 @default.
- W4387010034 cites W3206150562 @default.
- W4387010034 cites W4220757716 @default.
- W4387010034 cites W4225411436 @default.
- W4387010034 cites W4235646343 @default.
- W4387010034 cites W4288233858 @default.
- W4387010034 cites W4294170691 @default.
- W4387010034 cites W4306955484 @default.
- W4387010034 cites W4360836968 @default.
- W4387010034 cites W4367858557 @default.
- W4387010034 cites W4385245566 @default.
- W4387010034 doi "https://doi.org/10.3758/s13428-023-02212-3" @default.
- W4387010034 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37749424" @default.
- W4387010034 hasPublicationYear "2023" @default.
- W4387010034 type Work @default.
- W4387010034 citedByCount "0" @default.
- W4387010034 crossrefType "journal-article" @default.
- W4387010034 hasAuthorship W4387010034A5063273007 @default.
- W4387010034 hasAuthorship W4387010034A5083326050 @default.
- W4387010034 hasBestOaLocation W43870100341 @default.
- W4387010034 hasConcept C105795698 @default.
- W4387010034 hasConcept C119857082 @default.
- W4387010034 hasConcept C121332964 @default.
- W4387010034 hasConcept C132459708 @default.
- W4387010034 hasConcept C138885662 @default.
- W4387010034 hasConcept C154775046 @default.
- W4387010034 hasConcept C154945302 @default.
- W4387010034 hasConcept C165801399 @default.
- W4387010034 hasConcept C168900304 @default.
- W4387010034 hasConcept C17744445 @default.
- W4387010034 hasConcept C191795146 @default.
- W4387010034 hasConcept C199539241 @default.
- W4387010034 hasConcept C204321447 @default.
- W4387010034 hasConcept C33923547 @default.
- W4387010034 hasConcept C41008148 @default.
- W4387010034 hasConcept C41895202 @default.
- W4387010034 hasConcept C50644808 @default.
- W4387010034 hasConcept C62520636 @default.
- W4387010034 hasConcept C66322947 @default.
- W4387010034 hasConcept C81917197 @default.
- W4387010034 hasConceptScore W4387010034C105795698 @default.
- W4387010034 hasConceptScore W4387010034C119857082 @default.