Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387011723> ?p ?o ?g. }
- W4387011723 abstract "Abstract Predicting phenotypes accurately from genomic, environment and management factors is key to accelerating the development of novel cultivars with desirable traits. Inclusion of management and environmental factors enables in silico studies to predict the effect of specific management interventions or future climates. Despite the value such models would confer, much work remains to improve the accuracy of phenotypic predictions. Rather than advocate for a single specific modelling strategy, here we demonstrate within large multi-environment and multi-genotype maize trials that combining predictions from disparate models using simple ensemble approaches most often results in better accuracy than using any one of the models on their own. We investigated various ensemble combinations of different model types, model numbers and model weighting schemes to determine the accuracy of each. We find that ensembling generally improves performance even when combining only two models. The number and type of models included alter accuracy with improvements diminishing as the number of models included increases. Using a genetic algorithm to optimize ensemble composition reveals that, when weighted by the inverse of each model’s expected error, a combination of best linear unbiased predictor, linear fixed effects, deep learning, random forest and support vector regression models performed best on this dataset." @default.
- W4387011723 created "2023-09-26" @default.
- W4387011723 creator A5079185796 @default.
- W4387011723 creator A5088533708 @default.
- W4387011723 date "2023-07-01" @default.
- W4387011723 modified "2023-10-16" @default.
- W4387011723 title "Ensemble of Best Linear Unbiased Predictor, Machine Learning, and Deep Learning Models Predict Maize Yield Better Than Each Model Alone" @default.
- W4387011723 cites W2030126026 @default.
- W4387011723 cites W2047769598 @default.
- W4387011723 cites W2153707555 @default.
- W4387011723 cites W2212640525 @default.
- W4387011723 cites W2760544538 @default.
- W4387011723 cites W2766630000 @default.
- W4387011723 cites W2887039631 @default.
- W4387011723 cites W2897443710 @default.
- W4387011723 cites W2911964244 @default.
- W4387011723 cites W2951529407 @default.
- W4387011723 cites W2952918888 @default.
- W4387011723 cites W2974740838 @default.
- W4387011723 cites W2990427812 @default.
- W4387011723 cites W3007637688 @default.
- W4387011723 cites W3012909962 @default.
- W4387011723 cites W3022551883 @default.
- W4387011723 cites W3037968153 @default.
- W4387011723 cites W3091089105 @default.
- W4387011723 cites W3094245640 @default.
- W4387011723 cites W3099878876 @default.
- W4387011723 cites W3102148818 @default.
- W4387011723 cites W3119786698 @default.
- W4387011723 cites W3120192914 @default.
- W4387011723 cites W3121715254 @default.
- W4387011723 cites W3133644862 @default.
- W4387011723 cites W3135642309 @default.
- W4387011723 cites W3136200416 @default.
- W4387011723 cites W3159670706 @default.
- W4387011723 cites W3192482461 @default.
- W4387011723 cites W3193827159 @default.
- W4387011723 cites W3212606875 @default.
- W4387011723 cites W4200542629 @default.
- W4387011723 cites W4206801185 @default.
- W4387011723 cites W4220746704 @default.
- W4387011723 cites W4248391971 @default.
- W4387011723 cites W4309563001 @default.
- W4387011723 cites W4310253054 @default.
- W4387011723 cites W4315436689 @default.
- W4387011723 cites W4323067038 @default.
- W4387011723 cites W4378175663 @default.
- W4387011723 doi "https://doi.org/10.1093/insilicoplants/diad015" @default.
- W4387011723 hasPublicationYear "2023" @default.
- W4387011723 type Work @default.
- W4387011723 citedByCount "0" @default.
- W4387011723 crossrefType "journal-article" @default.
- W4387011723 hasAuthorship W4387011723A5079185796 @default.
- W4387011723 hasAuthorship W4387011723A5088533708 @default.
- W4387011723 hasBestOaLocation W43870117231 @default.
- W4387011723 hasConcept C103545067 @default.
- W4387011723 hasConcept C119857082 @default.
- W4387011723 hasConcept C119898033 @default.
- W4387011723 hasConcept C12267149 @default.
- W4387011723 hasConcept C126838900 @default.
- W4387011723 hasConcept C154945302 @default.
- W4387011723 hasConcept C163175372 @default.
- W4387011723 hasConcept C169258074 @default.
- W4387011723 hasConcept C183115368 @default.
- W4387011723 hasConcept C41008148 @default.
- W4387011723 hasConcept C45804977 @default.
- W4387011723 hasConcept C45942800 @default.
- W4387011723 hasConcept C71924100 @default.
- W4387011723 hasConcept C81917197 @default.
- W4387011723 hasConceptScore W4387011723C103545067 @default.
- W4387011723 hasConceptScore W4387011723C119857082 @default.
- W4387011723 hasConceptScore W4387011723C119898033 @default.
- W4387011723 hasConceptScore W4387011723C12267149 @default.
- W4387011723 hasConceptScore W4387011723C126838900 @default.
- W4387011723 hasConceptScore W4387011723C154945302 @default.
- W4387011723 hasConceptScore W4387011723C163175372 @default.
- W4387011723 hasConceptScore W4387011723C169258074 @default.
- W4387011723 hasConceptScore W4387011723C183115368 @default.
- W4387011723 hasConceptScore W4387011723C41008148 @default.
- W4387011723 hasConceptScore W4387011723C45804977 @default.
- W4387011723 hasConceptScore W4387011723C45942800 @default.
- W4387011723 hasConceptScore W4387011723C71924100 @default.
- W4387011723 hasConceptScore W4387011723C81917197 @default.
- W4387011723 hasFunder F4320332605 @default.
- W4387011723 hasIssue "2" @default.
- W4387011723 hasLocation W43870117231 @default.
- W4387011723 hasOpenAccess W4387011723 @default.
- W4387011723 hasPrimaryLocation W43870117231 @default.
- W4387011723 hasRelatedWork W1807784185 @default.
- W4387011723 hasRelatedWork W1909207154 @default.
- W4387011723 hasRelatedWork W2006499055 @default.
- W4387011723 hasRelatedWork W2356229883 @default.
- W4387011723 hasRelatedWork W2794896638 @default.
- W4387011723 hasRelatedWork W3101614107 @default.
- W4387011723 hasRelatedWork W3124390867 @default.
- W4387011723 hasRelatedWork W3149839747 @default.
- W4387011723 hasRelatedWork W3202800081 @default.
- W4387011723 hasRelatedWork W45170056 @default.
- W4387011723 hasVolume "5" @default.
- W4387011723 isParatext "false" @default.