Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387011812> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4387011812 abstract "Thermonuclear fusion is the use of nuclear fusion reactions to produce energy. With higher energy density and less nuclear waste production than nuclear fission, thermonuclear fusion is considered to be a safer and more sustainable source of energy. However, the extreme conditions required to achieve thermonuclear fusion, such as high temperatures and densities, pose significant challenges to the design, construction and operation of fusion reactions. To overcome these challenges, iterative integrated design with training in thermonuclear fusion modelling and simulation has emerged as an important approach. With the continuous development of the crossover between artificial intelligence and physical design, combined with the powerful fitting capabilities of deep neural networks, deep learning was born, which utilises the highly anthropomorphic features of deep learning (DL) to learn itself through constant interaction and trial and error with the controlled object. Deep reinforcement learning has received great attention for its highly anthropomorphic features, pointto-point design ideas, and low a priori dependence. In this paper, deep learning is used to train and iterate on thermonuclear fusion models and their visualisation simulations to quickly obtain parameters for fusion reactions, significantly shortening the development cycle and providing more options and possibilities for the design and optimisation of fusion reactions, thus avoiding unnecessary costs and waste. The integrated design of thermonuclear fusion modelling and simulation training and iteration provides strong support for the research and application of thermonuclear fusion technology." @default.
- W4387011812 created "2023-09-26" @default.
- W4387011812 creator A5009925415 @default.
- W4387011812 creator A5014064287 @default.
- W4387011812 creator A5026612900 @default.
- W4387011812 creator A5029165488 @default.
- W4387011812 creator A5039126063 @default.
- W4387011812 creator A5042026897 @default.
- W4387011812 creator A5053076315 @default.
- W4387011812 creator A5079918933 @default.
- W4387011812 date "2023-09-25" @default.
- W4387011812 modified "2023-09-26" @default.
- W4387011812 title "Integrated design for iterative training in thermonuclear fusion modelling and simulation" @default.
- W4387011812 doi "https://doi.org/10.1117/12.3004266" @default.
- W4387011812 hasPublicationYear "2023" @default.
- W4387011812 type Work @default.
- W4387011812 citedByCount "0" @default.
- W4387011812 crossrefType "proceedings-article" @default.
- W4387011812 hasAuthorship W4387011812A5009925415 @default.
- W4387011812 hasAuthorship W4387011812A5014064287 @default.
- W4387011812 hasAuthorship W4387011812A5026612900 @default.
- W4387011812 hasAuthorship W4387011812A5029165488 @default.
- W4387011812 hasAuthorship W4387011812A5039126063 @default.
- W4387011812 hasAuthorship W4387011812A5042026897 @default.
- W4387011812 hasAuthorship W4387011812A5053076315 @default.
- W4387011812 hasAuthorship W4387011812A5079918933 @default.
- W4387011812 hasConcept C119857082 @default.
- W4387011812 hasConcept C121332964 @default.
- W4387011812 hasConcept C127413603 @default.
- W4387011812 hasConcept C154945302 @default.
- W4387011812 hasConcept C185544564 @default.
- W4387011812 hasConcept C201995342 @default.
- W4387011812 hasConcept C24671956 @default.
- W4387011812 hasConcept C2776654903 @default.
- W4387011812 hasConcept C38652104 @default.
- W4387011812 hasConcept C41008148 @default.
- W4387011812 hasConcept C69285833 @default.
- W4387011812 hasConcept C72260207 @default.
- W4387011812 hasConcept C82706917 @default.
- W4387011812 hasConceptScore W4387011812C119857082 @default.
- W4387011812 hasConceptScore W4387011812C121332964 @default.
- W4387011812 hasConceptScore W4387011812C127413603 @default.
- W4387011812 hasConceptScore W4387011812C154945302 @default.
- W4387011812 hasConceptScore W4387011812C185544564 @default.
- W4387011812 hasConceptScore W4387011812C201995342 @default.
- W4387011812 hasConceptScore W4387011812C24671956 @default.
- W4387011812 hasConceptScore W4387011812C2776654903 @default.
- W4387011812 hasConceptScore W4387011812C38652104 @default.
- W4387011812 hasConceptScore W4387011812C41008148 @default.
- W4387011812 hasConceptScore W4387011812C69285833 @default.
- W4387011812 hasConceptScore W4387011812C72260207 @default.
- W4387011812 hasConceptScore W4387011812C82706917 @default.
- W4387011812 hasLocation W43870118121 @default.
- W4387011812 hasOpenAccess W4387011812 @default.
- W4387011812 hasPrimaryLocation W43870118121 @default.
- W4387011812 hasRelatedWork W1963648590 @default.
- W4387011812 hasRelatedWork W1964034105 @default.
- W4387011812 hasRelatedWork W1997393436 @default.
- W4387011812 hasRelatedWork W2026952210 @default.
- W4387011812 hasRelatedWork W2060142844 @default.
- W4387011812 hasRelatedWork W2294390659 @default.
- W4387011812 hasRelatedWork W2491248557 @default.
- W4387011812 hasRelatedWork W2745723341 @default.
- W4387011812 hasRelatedWork W2916739200 @default.
- W4387011812 hasRelatedWork W4252093087 @default.
- W4387011812 isParatext "false" @default.
- W4387011812 isRetracted "false" @default.
- W4387011812 workType "article" @default.