Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387012357> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4387012357 abstract "Abstract Background The rising global threat of diabetes demands timely detection to prevent its complications. Data scientists and practitioners are seen to be used AI and some other classification models on different aspects. Nevertheless, addressing missing data and outlier’s accurate predictions may be questionable. As such incorporating ML and AI for early diagnosis has gained attention. This study integrates medical knowledge and what types of advanced technology to develop a comprehensive diabetes classification model, focusing on handling missing values and outliers to achieve improved accuracy in early disease identification. Methods The researcher’s methodology prioritized meticulous data pre-processing to enhance analysis quality. To address missing data, the researchers utilized the missForest method, employing a multistage imputation process that minimizes data loss and distortions. Outlier detection relied on Mahalanobis squared distances, identifying anomalous data points. Instead of outright removal, the researchers strategically leveraged the missForest method, known for its robust imputation capabilities. Temporarily replacing outliers with missing values, this approach seamlessly integrated imputation. The ensuing hybrid data, minus extreme outliers and enriched via missForest, formed the foundation for subsequent analysis and modelling. Model selection and evaluation were performed on pre-processed data. This analysis incorporated two-step CV: initial dataset partition (80% training, 20% testing) and ten iterations of ten-fold cross-validation for model stability and parameter optimization. A diverse array of ML models—LogitBoost, mlpWeightDecayML, avNNet, and others—were assessed. Metrics such as sensitivity, specificity, precision, recall, F1-score, AUC, accuracy, and Kappa score were scrutinized. Results Among the models examined, LogitBoost emerged as a strong contender with a sensitivity of 0.8095, specificity of 0.9464, precision of 0.85, recall of 0.8095, F1-score of 0.8293, AUC of 0.7888, accuracy of 0.9091, and Kappa score of 0.7674. However, the comparative results showcase varying performances across different metrics and models. Sensitivity ranged from 0.6792 to 0.9057, specificity from 0.6 to 0.9464, and precision from 0.5455 to 0.85. Conclusions In summation, the methodical approach has illuminated the path toward enhanced diabetes classification accuracy. By diligently addressing missing values through the robust missForest method and tactfully managing outliers using the hybrid approach, the researchers have elevated the integrity and quality of the PIMA dataset. This strategic handling of missing values and outliers has not only fortified the dataset against potential distortions but has also culminated in improved accuracy in diabetes classification. Through the synergy of meticulous pre-processing, strategic outlier management, and comprehensive model evaluation, the researchers have contributed valuable insights into the realm of early diabetes detection." @default.
- W4387012357 created "2023-09-26" @default.
- W4387012357 creator A5046183370 @default.
- W4387012357 creator A5079745742 @default.
- W4387012357 creator A5092934479 @default.
- W4387012357 date "2023-09-25" @default.
- W4387012357 modified "2023-09-26" @default.
- W4387012357 title "Handling Missing Values and Outliers in Advanced Data Pre-processing: An Enhancement of Diabetes Classification Accuracy" @default.
- W4387012357 cites W2089927030 @default.
- W4387012357 cites W2103780778 @default.
- W4387012357 cites W2142827986 @default.
- W4387012357 cites W2779565479 @default.
- W4387012357 cites W2804354698 @default.
- W4387012357 cites W2805707465 @default.
- W4387012357 cites W2807027008 @default.
- W4387012357 cites W2808845928 @default.
- W4387012357 cites W2893311698 @default.
- W4387012357 cites W3149933339 @default.
- W4387012357 cites W4247239218 @default.
- W4387012357 doi "https://doi.org/10.21203/rs.3.rs-3364064/v1" @default.
- W4387012357 hasPublicationYear "2023" @default.
- W4387012357 type Work @default.
- W4387012357 citedByCount "0" @default.
- W4387012357 crossrefType "posted-content" @default.
- W4387012357 hasAuthorship W4387012357A5046183370 @default.
- W4387012357 hasAuthorship W4387012357A5079745742 @default.
- W4387012357 hasAuthorship W4387012357A5092934479 @default.
- W4387012357 hasBestOaLocation W43870123571 @default.
- W4387012357 hasConcept C119857082 @default.
- W4387012357 hasConcept C124101348 @default.
- W4387012357 hasConcept C127413603 @default.
- W4387012357 hasConcept C154945302 @default.
- W4387012357 hasConcept C163864269 @default.
- W4387012357 hasConcept C176217482 @default.
- W4387012357 hasConcept C1921717 @default.
- W4387012357 hasConcept C21547014 @default.
- W4387012357 hasConcept C24756922 @default.
- W4387012357 hasConcept C41008148 @default.
- W4387012357 hasConcept C58041806 @default.
- W4387012357 hasConcept C79337645 @default.
- W4387012357 hasConcept C9357733 @default.
- W4387012357 hasConceptScore W4387012357C119857082 @default.
- W4387012357 hasConceptScore W4387012357C124101348 @default.
- W4387012357 hasConceptScore W4387012357C127413603 @default.
- W4387012357 hasConceptScore W4387012357C154945302 @default.
- W4387012357 hasConceptScore W4387012357C163864269 @default.
- W4387012357 hasConceptScore W4387012357C176217482 @default.
- W4387012357 hasConceptScore W4387012357C1921717 @default.
- W4387012357 hasConceptScore W4387012357C21547014 @default.
- W4387012357 hasConceptScore W4387012357C24756922 @default.
- W4387012357 hasConceptScore W4387012357C41008148 @default.
- W4387012357 hasConceptScore W4387012357C58041806 @default.
- W4387012357 hasConceptScore W4387012357C79337645 @default.
- W4387012357 hasConceptScore W4387012357C9357733 @default.
- W4387012357 hasLocation W43870123571 @default.
- W4387012357 hasOpenAccess W4387012357 @default.
- W4387012357 hasPrimaryLocation W43870123571 @default.
- W4387012357 hasRelatedWork W1995790322 @default.
- W4387012357 hasRelatedWork W2009962304 @default.
- W4387012357 hasRelatedWork W2042870344 @default.
- W4387012357 hasRelatedWork W2999081408 @default.
- W4387012357 hasRelatedWork W3170920059 @default.
- W4387012357 hasRelatedWork W4214777637 @default.
- W4387012357 hasRelatedWork W4252292530 @default.
- W4387012357 hasRelatedWork W998835871 @default.
- W4387012357 hasRelatedWork W2185267549 @default.
- W4387012357 hasRelatedWork W2224353150 @default.
- W4387012357 isParatext "false" @default.
- W4387012357 isRetracted "false" @default.
- W4387012357 workType "article" @default.