Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387013014> ?p ?o ?g. }
- W4387013014 abstract "Abstract Computer simulations can play a central role in the understanding of phase-change materials and the development of advanced memory technologies. However, direct quantum-mechanical simulations are limited to simplified models containing a few hundred or thousand atoms. Here we report a machine-learning-based potential model that is trained using quantum-mechanical data and can be used to simulate a range of germanium–antimony–tellurium compositions—typical phase-change materials—under realistic device conditions. The speed of our model enables atomistic simulations of multiple thermal cycles and delicate operations for neuro-inspired computing, specifically cumulative SET and iterative RESET. A device-scale (40 × 20 × 20 nm 3 ) model containing over half a million atoms shows that our machine-learning approach can directly describe technologically relevant processes in memory devices based on phase-change materials." @default.
- W4387013014 created "2023-09-26" @default.
- W4387013014 creator A5006401841 @default.
- W4387013014 creator A5047079466 @default.
- W4387013014 creator A5055231928 @default.
- W4387013014 creator A5068327424 @default.
- W4387013014 date "2023-09-25" @default.
- W4387013014 modified "2023-10-15" @default.
- W4387013014 title "Device-scale atomistic modelling of phase-change memory materials" @default.
- W4387013014 cites W1175254230 @default.
- W4387013014 cites W1953238867 @default.
- W4387013014 cites W1988227526 @default.
- W4387013014 cites W1992985800 @default.
- W4387013014 cites W2002761831 @default.
- W4387013014 cites W2020681192 @default.
- W4387013014 cites W2029413789 @default.
- W4387013014 cites W2033035464 @default.
- W4387013014 cites W2038963924 @default.
- W4387013014 cites W2042515670 @default.
- W4387013014 cites W2042862454 @default.
- W4387013014 cites W2047428520 @default.
- W4387013014 cites W2055400640 @default.
- W4387013014 cites W2079529844 @default.
- W4387013014 cites W2083415705 @default.
- W4387013014 cites W2092498889 @default.
- W4387013014 cites W2108817071 @default.
- W4387013014 cites W2118991876 @default.
- W4387013014 cites W2159752439 @default.
- W4387013014 cites W2165805241 @default.
- W4387013014 cites W2334364695 @default.
- W4387013014 cites W2389556795 @default.
- W4387013014 cites W2461558998 @default.
- W4387013014 cites W2526202524 @default.
- W4387013014 cites W2533506057 @default.
- W4387013014 cites W2758404936 @default.
- W4387013014 cites W2767215064 @default.
- W4387013014 cites W2889002363 @default.
- W4387013014 cites W2902350857 @default.
- W4387013014 cites W2911001665 @default.
- W4387013014 cites W2920171802 @default.
- W4387013014 cites W2961198985 @default.
- W4387013014 cites W2969246650 @default.
- W4387013014 cites W2971894235 @default.
- W4387013014 cites W3013080934 @default.
- W4387013014 cites W3016272519 @default.
- W4387013014 cites W3017040642 @default.
- W4387013014 cites W3018642508 @default.
- W4387013014 cites W3102356589 @default.
- W4387013014 cites W3128451613 @default.
- W4387013014 cites W3133554413 @default.
- W4387013014 cites W3138642301 @default.
- W4387013014 cites W3179728841 @default.
- W4387013014 cites W3189164715 @default.
- W4387013014 cites W3196946269 @default.
- W4387013014 cites W3197551171 @default.
- W4387013014 cites W3200850345 @default.
- W4387013014 cites W3201073812 @default.
- W4387013014 cites W3211349871 @default.
- W4387013014 cites W4206375696 @default.
- W4387013014 cites W4362706835 @default.
- W4387013014 doi "https://doi.org/10.1038/s41928-023-01030-x" @default.
- W4387013014 hasPublicationYear "2023" @default.
- W4387013014 type Work @default.
- W4387013014 citedByCount "0" @default.
- W4387013014 crossrefType "journal-article" @default.
- W4387013014 hasAuthorship W4387013014A5006401841 @default.
- W4387013014 hasAuthorship W4387013014A5047079466 @default.
- W4387013014 hasAuthorship W4387013014A5055231928 @default.
- W4387013014 hasAuthorship W4387013014A5068327424 @default.
- W4387013014 hasBestOaLocation W43870130141 @default.
- W4387013014 hasConcept C106159729 @default.
- W4387013014 hasConcept C121332964 @default.
- W4387013014 hasConcept C133256868 @default.
- W4387013014 hasConcept C151927369 @default.
- W4387013014 hasConcept C154945302 @default.
- W4387013014 hasConcept C159985019 @default.
- W4387013014 hasConcept C162324750 @default.
- W4387013014 hasConcept C177264268 @default.
- W4387013014 hasConcept C192562407 @default.
- W4387013014 hasConcept C199360897 @default.
- W4387013014 hasConcept C204323151 @default.
- W4387013014 hasConcept C204530211 @default.
- W4387013014 hasConcept C2778755073 @default.
- W4387013014 hasConcept C2779795794 @default.
- W4387013014 hasConcept C41008148 @default.
- W4387013014 hasConcept C44280652 @default.
- W4387013014 hasConcept C459310 @default.
- W4387013014 hasConcept C50644808 @default.
- W4387013014 hasConcept C61696701 @default.
- W4387013014 hasConcept C62520636 @default.
- W4387013014 hasConcept C64142963 @default.
- W4387013014 hasConcept C84114770 @default.
- W4387013014 hasConcept C97355855 @default.
- W4387013014 hasConceptScore W4387013014C106159729 @default.
- W4387013014 hasConceptScore W4387013014C121332964 @default.
- W4387013014 hasConceptScore W4387013014C133256868 @default.
- W4387013014 hasConceptScore W4387013014C151927369 @default.
- W4387013014 hasConceptScore W4387013014C154945302 @default.
- W4387013014 hasConceptScore W4387013014C159985019 @default.
- W4387013014 hasConceptScore W4387013014C162324750 @default.