Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387013119> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4387013119 endingPage "012155" @default.
- W4387013119 startingPage "012155" @default.
- W4387013119 abstract "Abstract The fact that we can build models from data, and therefore refine our models with more data from experiments, is usually given for granted in scientific inquiry. However, how much information can we extract, and how precise can we expect our learned model to be, if we have only a finite amount of data at our disposal? Nuclear physics demands an high degree of precision from models that are inferred from the limited number of nuclei that can be possibly made in the laboratories. In manuscript I will introduce some concepts of computational science, such as statistical theory of learning and Hamiltonian complexity, and use them to contextualise the results concerning the amount of data necessary to extrapolate a mass model to a given precision." @default.
- W4387013119 created "2023-09-26" @default.
- W4387013119 creator A5029120317 @default.
- W4387013119 date "2023-09-01" @default.
- W4387013119 modified "2023-09-26" @default.
- W4387013119 title "An introduction to computational complexity and statistical learning theory applied to nuclear models" @default.
- W4387013119 cites W2028736041 @default.
- W4387013119 cites W2127596062 @default.
- W4387013119 cites W2149298154 @default.
- W4387013119 cites W2153671025 @default.
- W4387013119 cites W2783931264 @default.
- W4387013119 cites W2889126882 @default.
- W4387013119 cites W2895657145 @default.
- W4387013119 cites W2972180519 @default.
- W4387013119 cites W3019832623 @default.
- W4387013119 cites W3037535514 @default.
- W4387013119 cites W3098470619 @default.
- W4387013119 cites W3159691341 @default.
- W4387013119 cites W4200460999 @default.
- W4387013119 cites W4295101746 @default.
- W4387013119 doi "https://doi.org/10.1088/1742-6596/2586/1/012155" @default.
- W4387013119 hasPublicationYear "2023" @default.
- W4387013119 type Work @default.
- W4387013119 citedByCount "0" @default.
- W4387013119 crossrefType "journal-article" @default.
- W4387013119 hasAuthorship W4387013119A5029120317 @default.
- W4387013119 hasBestOaLocation W43870131191 @default.
- W4387013119 hasConcept C114289077 @default.
- W4387013119 hasConcept C119857082 @default.
- W4387013119 hasConcept C154945302 @default.
- W4387013119 hasConcept C2522767166 @default.
- W4387013119 hasConcept C41008148 @default.
- W4387013119 hasConcept C80444323 @default.
- W4387013119 hasConceptScore W4387013119C114289077 @default.
- W4387013119 hasConceptScore W4387013119C119857082 @default.
- W4387013119 hasConceptScore W4387013119C154945302 @default.
- W4387013119 hasConceptScore W4387013119C2522767166 @default.
- W4387013119 hasConceptScore W4387013119C41008148 @default.
- W4387013119 hasConceptScore W4387013119C80444323 @default.
- W4387013119 hasIssue "1" @default.
- W4387013119 hasLocation W43870131191 @default.
- W4387013119 hasOpenAccess W4387013119 @default.
- W4387013119 hasPrimaryLocation W43870131191 @default.
- W4387013119 hasRelatedWork W2961085424 @default.
- W4387013119 hasRelatedWork W3046775127 @default.
- W4387013119 hasRelatedWork W3170094116 @default.
- W4387013119 hasRelatedWork W4205958290 @default.
- W4387013119 hasRelatedWork W4285260836 @default.
- W4387013119 hasRelatedWork W4286629047 @default.
- W4387013119 hasRelatedWork W4306321456 @default.
- W4387013119 hasRelatedWork W4306674287 @default.
- W4387013119 hasRelatedWork W4386462264 @default.
- W4387013119 hasRelatedWork W4224009465 @default.
- W4387013119 hasVolume "2586" @default.
- W4387013119 isParatext "false" @default.
- W4387013119 isRetracted "false" @default.
- W4387013119 workType "article" @default.