Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387015439> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4387015439 abstract "AI in imaging and therapy: innovations, ethics and impact: EditorialAI in imaging and therapy: innovations, ethics, and impact – introductory editorialIssam El Naqa and Karen DrukkerIssam El NaqaMoffitt Cancer Center, Tampa, Florida, USASearch for more papers by this author and Karen DrukkerUniversity of Chicago, Chicago, Illinois, USASearch for more papers by this authorPublished Online:25 Sep 2023https://doi.org/10.1259/bjr.20239004SectionsPDF/EPUBFull Text ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InEmail AboutAI in imaging and therapy: innovations, ethics, and impact – introductory editorial. The British Journal of Radiology, 96(1150), pp. REFERENCES1. Mello-Thoms C, Mello CAB. Clinical applications of artificial intelligence in radiology. Br J Radiol 2023; 96: 20221031. doi: https://doi.org/10.1259/bjr.20221031 Google Scholar2. Wei L, Niraula D, Gates EDH, Fu J, Luo Y, Nyflot MJ, et al.. Artificial intelligence (AI) and machine learning (ML) in precision oncology: a review on enhancing discoverability through multiomics integration. Br J Radiol 2023; 96: 20230211. doi: https://doi.org/10.1259/bjr.20230211 Google Scholar3. Drabiak K, Kyzer S, Nemov V, El Naqa I. AI and machine learning ethics, law, diversity, and global impact. Br J Radiol 2023; 96: 20220934. doi: https://doi.org/10.1259/bjr.20220934 Google Scholar4. Gichoya JW, Thomas K, Celi LA, Safdar N, Banerjee I, Banja JD, et al.. AI pitfalls and what not to do: mitigating bias in AI. Br J Radiol 2023; 96: 20230023. doi: https://doi.org/10.1259/bjr.20230023 Google Scholar5. Sahiner B, Chen W, Samala RK, Petrick N. Data drift in medical machine learning: implications and potential remedies. Br J Radiol 2023; 96: 20220878. doi: https://doi.org/10.1259/bjr.20220878 Google Scholar6. JinKW, LiQ, Xie Y, Xiao G. Artificial intelligence in mental healthcare: an overview and future perspectives. Br J Radiol 2023; 96: 20230213. doi: https://doi.org/10.1259/bjr.20230213 Google Scholar7. Cui S, Traverso A, Niraula D, Zou J, Luo Y, Owen D, et al.. Interpretable artificial intelligence in Radiology and radiation oncology. Br J Radiol 2023; 96: 20230142. doi: https://doi.org/10.1259/bjr.20230142 Google Scholar8. Armato SG, Drukker K, Hadjiiski L. AI in medical imaging grand challenges: translation from competition to research benefit and patient care. Br J Radiol 2023; 96: 20221152. doi: https://doi.org/10.1259/bjr.20221152 Google Scholar9. Rehman MHur, Hugo Lopez Pinaya W, Nachev P, Teo JT, Ourselin S, Cardoso MJ. Federated learning for medical imaging radiology: a review. Br J Radiol 2023; 96: 20220890. doi: https://doi.org/10.1259/bjr.20220890 Google Scholar10. Kelly BS, Judge C, Hoare S, Colleran G, Lawlor A, Killeen RP. How to apply evidence-based practice to the use of artificial intelligence in radiology (EBRAI) using the data algorithm training output (DATO) method. Br J Radiol 2023; 96: 20220215. doi: https://doi.org/10.1259/bjr.20220215 Google Scholar11. Brady SL. Implementation of AI image reconstruction in CT-how is it validated and what dose reductions can be achieved. Br J Radiol 2023; 96: 20220915. doi: https://doi.org/10.1259/bjr.20220915 Medline, Google Scholar12. Reader AJ, Pan B. AI for PET image reconstruction. Br J Radiol 2023; 96: 20230292. doi: https://doi.org/10.1259/bjr.20230292 Google Scholar13. Yasaka K, Hatano S, Mizuki M, Okimoto N, Kubo T, Shibata E, et al.. Effects of deep learning on radiologists' and radiology residents' performance in identifying esophageal cancer on CT. Br J Radiol 2023; 96: 20220685. doi: https://doi.org/10.1259/bjr.20220685 Google Scholar Next article FiguresReferencesRelatedDetails Volume 96, Issue 1150October 2023 © 2023 The Authors. Published by the British Institute of Radiology History Published onlineSeptember 25,2023 Metrics Download PDF" @default.
- W4387015439 created "2023-09-26" @default.
- W4387015439 creator A5024321936 @default.
- W4387015439 creator A5071233739 @default.
- W4387015439 date "2023-10-01" @default.
- W4387015439 modified "2023-09-26" @default.
- W4387015439 title "AI in imaging and therapy: innovations, ethics, and impact – introductory editorial" @default.
- W4387015439 cites W4361003621 @default.
- W4387015439 cites W4362460404 @default.
- W4387015439 cites W4366742569 @default.
- W4387015439 cites W4367047941 @default.
- W4387015439 cites W4367174691 @default.
- W4387015439 cites W4376642144 @default.
- W4387015439 cites W4385185787 @default.
- W4387015439 cites W4385264908 @default.
- W4387015439 cites W4386397671 @default.
- W4387015439 cites W4386623659 @default.
- W4387015439 cites W4386623688 @default.
- W4387015439 cites W4386624058 @default.
- W4387015439 cites W4387015497 @default.
- W4387015439 doi "https://doi.org/10.1259/bjr.20239004" @default.
- W4387015439 hasPublicationYear "2023" @default.
- W4387015439 type Work @default.
- W4387015439 citedByCount "0" @default.
- W4387015439 crossrefType "journal-article" @default.
- W4387015439 hasAuthorship W4387015439A5024321936 @default.
- W4387015439 hasAuthorship W4387015439A5071233739 @default.
- W4387015439 hasConcept C154945302 @default.
- W4387015439 hasConcept C161191863 @default.
- W4387015439 hasConcept C41008148 @default.
- W4387015439 hasConcept C71924100 @default.
- W4387015439 hasConceptScore W4387015439C154945302 @default.
- W4387015439 hasConceptScore W4387015439C161191863 @default.
- W4387015439 hasConceptScore W4387015439C41008148 @default.
- W4387015439 hasConceptScore W4387015439C71924100 @default.
- W4387015439 hasIssue "1150" @default.
- W4387015439 hasLocation W43870154391 @default.
- W4387015439 hasOpenAccess W4387015439 @default.
- W4387015439 hasPrimaryLocation W43870154391 @default.
- W4387015439 hasRelatedWork W1506200166 @default.
- W4387015439 hasRelatedWork W1995515455 @default.
- W4387015439 hasRelatedWork W2048182022 @default.
- W4387015439 hasRelatedWork W2080531066 @default.
- W4387015439 hasRelatedWork W2604872355 @default.
- W4387015439 hasRelatedWork W2748952813 @default.
- W4387015439 hasRelatedWork W2899084033 @default.
- W4387015439 hasRelatedWork W3031052312 @default.
- W4387015439 hasRelatedWork W3032375762 @default.
- W4387015439 hasRelatedWork W3108674512 @default.
- W4387015439 hasVolume "96" @default.
- W4387015439 isParatext "false" @default.
- W4387015439 isRetracted "false" @default.
- W4387015439 workType "article" @default.