Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387015855> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4387015855 endingPage "11" @default.
- W4387015855 startingPage "1" @default.
- W4387015855 abstract "AbstractThe traditional nonintrusive load identification (NILD) algorithms result in high computational costs based on classification models. And they cannot accurately identify loads with similar voltage-current trajectories that are frequently encountered in practical applications. Aiming at these deficiencies, an NILD algorithm is proposed based on combined weighting-the technique for order preference by similarity to ideal solution (TOPSIS) of feature fusion. The feature is fused by one image feature and eight numerical features with the combination weighting method. The weights are calculated by combining the principal component analysis, entropy, and the criteria importance through intercriteria correlation weighting methods to improve the utilization of features. The similarity between these nine features of a load and the corresponding features of other loads is calculated by the TOPSIS algorithm. Similarity analysis is used to determine whether or not a load is a known load, and to obtain an identification result. If it is an unknown load, the result can be obtained by dynamically updating the database and identifying it again. The results obtained indicate that this proposed algorithm can significantly improve the accuracy of load identification while reducing the computational costs.Keywords: NILDPCAEntropy WeightingCRITICTOPSIS AUTHORS’ CONTRIBUTIONSChunning wrote and revised the manuscript. Na Luo performed the experiments, Feng Li and Huan Pan validated the experiment results.COMPETING INTERESTSNo competing interests were disclosed.ACKNOWLEDGMENTSThe authors thank the anonymous reviewers for their helpful suggestions and comments that retrofitted this work.DISCLOSURE STATEMENTNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the National Science Foundation of China under Grant No. 52167006, the Key Research and Development Program of Ningxia Province under Grant No. 2020BDE03003 and the Key Research and Development Project-Special Project for East-West Cooperation in Ningxia Province under Grant No. 2021BEE03016.Notes on contributorsChunning NaChunning Na received the Ph.D. degree from North China Electric Power University in 2017. She works as an associate professor at the School of Electronic and Electrical Engineering in Ningxia University. Her research interest covers new energy grid-connected consumption, power management, and NILM.Na LuoNa Luo received a B.S. degree from Yangtze University in 2017. She is currently studying for a master’s degree at Ningxia University. Her main research interest is NILM.Feng LiFeng Li received a Ph.D. degree from Tianjin University in 2017. He works as an associate professor at the School of Electronic and Electrical Engineering, Ningxia University. His research interest covers photovoltaic power generation technology, drive control of AC motors, and NILM.Huan PanHuan Pan received a Ph.D. degree from Central South University in 2012. He works as a professor at the School of Electronic and Electrical Engineering, Ningxia University. His research interest covers modeling and analysis of NILM, cooperative control of microgrids, and grid-connection control of distributed generations." @default.
- W4387015855 created "2023-09-26" @default.
- W4387015855 creator A5026981112 @default.
- W4387015855 creator A5030267235 @default.
- W4387015855 creator A5054215335 @default.
- W4387015855 creator A5061737187 @default.
- W4387015855 date "2023-09-25" @default.
- W4387015855 modified "2023-09-26" @default.
- W4387015855 title "Noninvasive Load Identification Based on Combined Weighting-TOPSIS of Multifeature Fusion" @default.
- W4387015855 cites W1994042232 @default.
- W4387015855 cites W2123910460 @default.
- W4387015855 cites W2198139313 @default.
- W4387015855 cites W2202212308 @default.
- W4387015855 cites W2289387268 @default.
- W4387015855 cites W2739495396 @default.
- W4387015855 cites W2904841534 @default.
- W4387015855 cites W3006472355 @default.
- W4387015855 cites W3152196593 @default.
- W4387015855 cites W3182116200 @default.
- W4387015855 cites W4200347931 @default.
- W4387015855 cites W4214822540 @default.
- W4387015855 cites W4295602274 @default.
- W4387015855 doi "https://doi.org/10.1080/15325008.2023.2261119" @default.
- W4387015855 hasPublicationYear "2023" @default.
- W4387015855 type Work @default.
- W4387015855 citedByCount "0" @default.
- W4387015855 crossrefType "journal-article" @default.
- W4387015855 hasAuthorship W4387015855A5026981112 @default.
- W4387015855 hasAuthorship W4387015855A5030267235 @default.
- W4387015855 hasAuthorship W4387015855A5054215335 @default.
- W4387015855 hasAuthorship W4387015855A5061737187 @default.
- W4387015855 hasConcept C103278499 @default.
- W4387015855 hasConcept C106301342 @default.
- W4387015855 hasConcept C115961682 @default.
- W4387015855 hasConcept C116834253 @default.
- W4387015855 hasConcept C121332964 @default.
- W4387015855 hasConcept C124101348 @default.
- W4387015855 hasConcept C126838900 @default.
- W4387015855 hasConcept C127413603 @default.
- W4387015855 hasConcept C138885662 @default.
- W4387015855 hasConcept C153180895 @default.
- W4387015855 hasConcept C154945302 @default.
- W4387015855 hasConcept C183115368 @default.
- W4387015855 hasConcept C27438332 @default.
- W4387015855 hasConcept C2776401178 @default.
- W4387015855 hasConcept C41008148 @default.
- W4387015855 hasConcept C41895202 @default.
- W4387015855 hasConcept C42475967 @default.
- W4387015855 hasConcept C51566761 @default.
- W4387015855 hasConcept C59822182 @default.
- W4387015855 hasConcept C62520636 @default.
- W4387015855 hasConcept C71924100 @default.
- W4387015855 hasConcept C86803240 @default.
- W4387015855 hasConceptScore W4387015855C103278499 @default.
- W4387015855 hasConceptScore W4387015855C106301342 @default.
- W4387015855 hasConceptScore W4387015855C115961682 @default.
- W4387015855 hasConceptScore W4387015855C116834253 @default.
- W4387015855 hasConceptScore W4387015855C121332964 @default.
- W4387015855 hasConceptScore W4387015855C124101348 @default.
- W4387015855 hasConceptScore W4387015855C126838900 @default.
- W4387015855 hasConceptScore W4387015855C127413603 @default.
- W4387015855 hasConceptScore W4387015855C138885662 @default.
- W4387015855 hasConceptScore W4387015855C153180895 @default.
- W4387015855 hasConceptScore W4387015855C154945302 @default.
- W4387015855 hasConceptScore W4387015855C183115368 @default.
- W4387015855 hasConceptScore W4387015855C27438332 @default.
- W4387015855 hasConceptScore W4387015855C2776401178 @default.
- W4387015855 hasConceptScore W4387015855C41008148 @default.
- W4387015855 hasConceptScore W4387015855C41895202 @default.
- W4387015855 hasConceptScore W4387015855C42475967 @default.
- W4387015855 hasConceptScore W4387015855C51566761 @default.
- W4387015855 hasConceptScore W4387015855C59822182 @default.
- W4387015855 hasConceptScore W4387015855C62520636 @default.
- W4387015855 hasConceptScore W4387015855C71924100 @default.
- W4387015855 hasConceptScore W4387015855C86803240 @default.
- W4387015855 hasFunder F4320321001 @default.
- W4387015855 hasLocation W43870158551 @default.
- W4387015855 hasOpenAccess W4387015855 @default.
- W4387015855 hasPrimaryLocation W43870158551 @default.
- W4387015855 hasRelatedWork W2085553065 @default.
- W4387015855 hasRelatedWork W2350910173 @default.
- W4387015855 hasRelatedWork W2380927352 @default.
- W4387015855 hasRelatedWork W2383096489 @default.
- W4387015855 hasRelatedWork W2384688413 @default.
- W4387015855 hasRelatedWork W3178621026 @default.
- W4387015855 hasRelatedWork W4211209597 @default.
- W4387015855 hasRelatedWork W4247873057 @default.
- W4387015855 hasRelatedWork W2137598809 @default.
- W4387015855 hasRelatedWork W2164626501 @default.
- W4387015855 isParatext "false" @default.
- W4387015855 isRetracted "false" @default.
- W4387015855 workType "article" @default.