Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387018035> ?p ?o ?g. }
- W4387018035 abstract "Purpose This paper aims to apply several data mining techniques for predicting the daily precision improvement of Jakarta Islamic Index (JKII) prices based on big data of symmetric volatility in Indonesia’s Islamic stock market. Design/methodology/approach This research uses big data mining techniques to predict daily precision improvement of JKII prices by applying the AdaBoost, K-nearest neighbor, random forest and artificial neural networks. This research uses big data with symmetric volatility as inputs in the predicting model, whereas the closing prices of JKII were used as the target outputs of daily precision improvement. For choosing the optimal prediction performance according to the criteria of the lowest prediction errors, this research uses four metrics of mean absolute error, mean squared error, root mean squared error and R -squared. Findings The experimental results determine that the optimal technique for predicting the daily precision improvement of the JKII prices in Indonesia’s Islamic stock market is the AdaBoost technique, which generates the optimal predicting performance with the lowest prediction errors, and provides the optimum knowledge from the big data of symmetric volatility in Indonesia’s Islamic stock market. In addition, the random forest technique is also considered another robust technique in predicting the daily precision improvement of the JKII prices as it delivers closer values to the optimal performance of the AdaBoost technique. Practical implications This research is filling the literature gap of the absence of using big data mining techniques in the prediction process of Islamic stock markets by delivering new operational techniques for predicting the daily stock precision improvement. Also, it helps investors to manage the optimal portfolios and to decrease the risk of trading in global Islamic stock markets based on using big data mining of symmetric volatility. Originality/value This research is a pioneer in using big data mining of symmetric volatility in the prediction of an Islamic stock market index." @default.
- W4387018035 created "2023-09-26" @default.
- W4387018035 creator A5011257865 @default.
- W4387018035 creator A5025850439 @default.
- W4387018035 date "2023-09-26" @default.
- W4387018035 modified "2023-09-26" @default.
- W4387018035 title "Predicting daily precision improvement of Jakarta Islamic Index in Indonesia’s Islamic stock market using big data mining" @default.
- W4387018035 cites W1968969471 @default.
- W4387018035 cites W1980287199 @default.
- W4387018035 cites W1988790447 @default.
- W4387018035 cites W2010681793 @default.
- W4387018035 cites W2077791698 @default.
- W4387018035 cites W2130508343 @default.
- W4387018035 cites W2515598829 @default.
- W4387018035 cites W2593842564 @default.
- W4387018035 cites W2730480725 @default.
- W4387018035 cites W2789399411 @default.
- W4387018035 cites W2791678452 @default.
- W4387018035 cites W2794522916 @default.
- W4387018035 cites W2797260376 @default.
- W4387018035 cites W2902640113 @default.
- W4387018035 cites W2919858823 @default.
- W4387018035 cites W2948540542 @default.
- W4387018035 cites W2967723546 @default.
- W4387018035 cites W2975308768 @default.
- W4387018035 cites W3004146596 @default.
- W4387018035 cites W3004223135 @default.
- W4387018035 cites W3004396576 @default.
- W4387018035 cites W3017193407 @default.
- W4387018035 cites W3030864421 @default.
- W4387018035 cites W3031826057 @default.
- W4387018035 cites W3088636892 @default.
- W4387018035 cites W3093027104 @default.
- W4387018035 cites W3119023314 @default.
- W4387018035 cites W3123578490 @default.
- W4387018035 cites W3135521497 @default.
- W4387018035 cites W3158669684 @default.
- W4387018035 cites W3162017350 @default.
- W4387018035 cites W3168183205 @default.
- W4387018035 cites W3171397019 @default.
- W4387018035 cites W3176621227 @default.
- W4387018035 cites W3181448069 @default.
- W4387018035 cites W3182706339 @default.
- W4387018035 cites W3188795335 @default.
- W4387018035 cites W3198321709 @default.
- W4387018035 cites W3205879036 @default.
- W4387018035 cites W3206953967 @default.
- W4387018035 cites W3215186461 @default.
- W4387018035 cites W3215642003 @default.
- W4387018035 cites W3216383863 @default.
- W4387018035 cites W3217626109 @default.
- W4387018035 cites W4200010379 @default.
- W4387018035 cites W4210259535 @default.
- W4387018035 cites W4212883601 @default.
- W4387018035 cites W4224302811 @default.
- W4387018035 cites W4226308106 @default.
- W4387018035 cites W4229010588 @default.
- W4387018035 cites W4248439738 @default.
- W4387018035 cites W746481651 @default.
- W4387018035 doi "https://doi.org/10.1108/jm2-12-2022-0291" @default.
- W4387018035 hasPublicationYear "2023" @default.
- W4387018035 type Work @default.
- W4387018035 citedByCount "0" @default.
- W4387018035 crossrefType "journal-article" @default.
- W4387018035 hasAuthorship W4387018035A5011257865 @default.
- W4387018035 hasAuthorship W4387018035A5025850439 @default.
- W4387018035 hasConcept C105795698 @default.
- W4387018035 hasConcept C12267149 @default.
- W4387018035 hasConcept C124101348 @default.
- W4387018035 hasConcept C127413603 @default.
- W4387018035 hasConcept C139945424 @default.
- W4387018035 hasConcept C141404830 @default.
- W4387018035 hasConcept C149782125 @default.
- W4387018035 hasConcept C151730666 @default.
- W4387018035 hasConcept C154945302 @default.
- W4387018035 hasConcept C169258074 @default.
- W4387018035 hasConcept C204036174 @default.
- W4387018035 hasConcept C2780299701 @default.
- W4387018035 hasConcept C2780762169 @default.
- W4387018035 hasConcept C33923547 @default.
- W4387018035 hasConcept C41008148 @default.
- W4387018035 hasConcept C50644808 @default.
- W4387018035 hasConcept C75684735 @default.
- W4387018035 hasConcept C78519656 @default.
- W4387018035 hasConcept C86803240 @default.
- W4387018035 hasConcept C88389905 @default.
- W4387018035 hasConcept C91602232 @default.
- W4387018035 hasConceptScore W4387018035C105795698 @default.
- W4387018035 hasConceptScore W4387018035C12267149 @default.
- W4387018035 hasConceptScore W4387018035C124101348 @default.
- W4387018035 hasConceptScore W4387018035C127413603 @default.
- W4387018035 hasConceptScore W4387018035C139945424 @default.
- W4387018035 hasConceptScore W4387018035C141404830 @default.
- W4387018035 hasConceptScore W4387018035C149782125 @default.
- W4387018035 hasConceptScore W4387018035C151730666 @default.
- W4387018035 hasConceptScore W4387018035C154945302 @default.
- W4387018035 hasConceptScore W4387018035C169258074 @default.
- W4387018035 hasConceptScore W4387018035C204036174 @default.
- W4387018035 hasConceptScore W4387018035C2780299701 @default.
- W4387018035 hasConceptScore W4387018035C2780762169 @default.