Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387018190> ?p ?o ?g. }
- W4387018190 abstract "Purpose This paper aims to minimize the mean-risk cost of sustainable and resilient supplier selection, order allocation and production scheduling (SS,OA&PS) problem under uncertainty of disruptions. The authors use conditional value at risk (CVaR) as a risk measure in optimizing the combined objective function of the total expected value and CVaR cost. A sustainable supply chain can create significant competitive advantages for companies through social justice, human rights and environmental progress. To control disruptions, the authors applied (proactive and reactive) resilient strategies. In this study, the authors combine resilience and social responsibility issues that lead to synergy in supply chain activities. Design/methodology/approach The present paper proposes a risk-averse two-stage mixed-integer stochastic programming model for sustainable and resilient SS,OA&PS problem under supply disruptions. In this decision-making process, determining the primary supplier portfolio according to the minimum sustainable-resilient score establishes the first-stage decisions. The recourse or second-stage decisions are: determining the amount of order allocation and scheduling of parts by each supplier, determining the reactive risk management strategies, determining the amount of order allocation and scheduling by each of reaction strategies and determining the number of products and scheduling of products on the planning time horizon. Uncertain parameters of this study are the start time of disruption, remaining capacity rate of suppliers and lead times associated with each reactive strategy. Findings In this paper, several numerical examples along with different sensitivity analyses (on risk parameters, minimum sustainable-resilience score of suppliers and shortage costs) were presented to evaluate the applicability of the proposed model. The results showed that the two-stage risk-averse stochastic mixed-integer programming model for designing the SS,OA&PS problem by considering economic and social aspects and resilience strategies is an effective and flexible tool and leads to optimal decisions with the least cost. In addition, the managerial insights obtained from this study are extracted and stated in Section 4.6. Originality/value This work proposes a risk-averse stochastic programming approach for a new multi-product sustainable and resilient SS,OA&PS problem. The planning horizon includes three periods before the disruption, during the disruption period and the recovery period. Other contributions of this work are: selecting the main supply portfolio based on the minimum score of sustainable-resilient criteria of suppliers, allocating and scheduling suppliers orders before and after disruptions, considering the balance constraint in receiving parts and using proactive and reactive risk management strategies simultaneously. Also, the scheduling of reactive strategies in different investment modes is applied to this problem." @default.
- W4387018190 created "2023-09-26" @default.
- W4387018190 creator A5016658450 @default.
- W4387018190 creator A5071939453 @default.
- W4387018190 creator A5077902306 @default.
- W4387018190 creator A5088055375 @default.
- W4387018190 date "2023-09-26" @default.
- W4387018190 modified "2023-09-26" @default.
- W4387018190 title "Sustainable and resilient supplier selection, order allocation, and production scheduling problem under disruption utilizing conditional value at risk" @default.
- W4387018190 cites W1647779468 @default.
- W4387018190 cites W1967188039 @default.
- W4387018190 cites W1974523142 @default.
- W4387018190 cites W1998652696 @default.
- W4387018190 cites W2002661876 @default.
- W4387018190 cites W2009968931 @default.
- W4387018190 cites W2013285825 @default.
- W4387018190 cites W2023572015 @default.
- W4387018190 cites W2051866468 @default.
- W4387018190 cites W2065732913 @default.
- W4387018190 cites W2066344452 @default.
- W4387018190 cites W2068073458 @default.
- W4387018190 cites W2068142192 @default.
- W4387018190 cites W2071673105 @default.
- W4387018190 cites W2077292109 @default.
- W4387018190 cites W2107869560 @default.
- W4387018190 cites W2123130943 @default.
- W4387018190 cites W2128751223 @default.
- W4387018190 cites W2134080595 @default.
- W4387018190 cites W2219102503 @default.
- W4387018190 cites W2283682293 @default.
- W4387018190 cites W2416867200 @default.
- W4387018190 cites W2473994668 @default.
- W4387018190 cites W2498807025 @default.
- W4387018190 cites W2528680819 @default.
- W4387018190 cites W2558783391 @default.
- W4387018190 cites W2604526922 @default.
- W4387018190 cites W2614029147 @default.
- W4387018190 cites W2614819110 @default.
- W4387018190 cites W2667759891 @default.
- W4387018190 cites W2753411542 @default.
- W4387018190 cites W2755294476 @default.
- W4387018190 cites W2765114493 @default.
- W4387018190 cites W2767686867 @default.
- W4387018190 cites W2769771193 @default.
- W4387018190 cites W2790908211 @default.
- W4387018190 cites W2801104403 @default.
- W4387018190 cites W2804397830 @default.
- W4387018190 cites W2895048157 @default.
- W4387018190 cites W2902275451 @default.
- W4387018190 cites W2902986846 @default.
- W4387018190 cites W2922285790 @default.
- W4387018190 cites W2927511117 @default.
- W4387018190 cites W2991944846 @default.
- W4387018190 cites W3022483222 @default.
- W4387018190 cites W3023935423 @default.
- W4387018190 cites W3038536823 @default.
- W4387018190 cites W3082871725 @default.
- W4387018190 cites W3096276465 @default.
- W4387018190 cites W3121568017 @default.
- W4387018190 cites W3124407081 @default.
- W4387018190 cites W3130426757 @default.
- W4387018190 cites W3176918042 @default.
- W4387018190 doi "https://doi.org/10.1108/jm2-10-2022-0250" @default.
- W4387018190 hasPublicationYear "2023" @default.
- W4387018190 type Work @default.
- W4387018190 citedByCount "0" @default.
- W4387018190 crossrefType "journal-article" @default.
- W4387018190 hasAuthorship W4387018190A5016658450 @default.
- W4387018190 hasAuthorship W4387018190A5071939453 @default.
- W4387018190 hasAuthorship W4387018190A5077902306 @default.
- W4387018190 hasAuthorship W4387018190A5088055375 @default.
- W4387018190 hasConcept C10138342 @default.
- W4387018190 hasConcept C108713360 @default.
- W4387018190 hasConcept C112930515 @default.
- W4387018190 hasConcept C126255220 @default.
- W4387018190 hasConcept C127413603 @default.
- W4387018190 hasConcept C134560507 @default.
- W4387018190 hasConcept C137631369 @default.
- W4387018190 hasConcept C144133560 @default.
- W4387018190 hasConcept C162324750 @default.
- W4387018190 hasConcept C162853370 @default.
- W4387018190 hasConcept C206729178 @default.
- W4387018190 hasConcept C21547014 @default.
- W4387018190 hasConcept C2779922397 @default.
- W4387018190 hasConcept C28761237 @default.
- W4387018190 hasConcept C32896092 @default.
- W4387018190 hasConcept C33923547 @default.
- W4387018190 hasConcept C41008148 @default.
- W4387018190 hasConcept C42475967 @default.
- W4387018190 hasConcept C5496284 @default.
- W4387018190 hasConceptScore W4387018190C10138342 @default.
- W4387018190 hasConceptScore W4387018190C108713360 @default.
- W4387018190 hasConceptScore W4387018190C112930515 @default.
- W4387018190 hasConceptScore W4387018190C126255220 @default.
- W4387018190 hasConceptScore W4387018190C127413603 @default.
- W4387018190 hasConceptScore W4387018190C134560507 @default.
- W4387018190 hasConceptScore W4387018190C137631369 @default.
- W4387018190 hasConceptScore W4387018190C144133560 @default.
- W4387018190 hasConceptScore W4387018190C162324750 @default.
- W4387018190 hasConceptScore W4387018190C162853370 @default.