Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387020154> ?p ?o ?g. }
- W4387020154 abstract "Abstract To transform speech into words, the human brain must accommodate variability across utterances in intonation, speech rate, volume, accents and so on. A promising approach to explaining this process has been to model electroencephalogram (EEG) recordings of brain responses to speech. Contemporary models typically invoke speech categories (e.g. phonemes) as an intermediary representational stage between sounds and words. However, such categorical models are typically hand-crafted and therefore incomplete because they cannot speak to the neural computations that putatively underpin categorization. By providing end-to-end accounts of speech-to-language transformation, new deep-learning systems could enable more complete brain models. We here model EEG recordings of audiobook comprehension with the deep-learning system Whisper. We find that (1) Whisper provides an accurate, self-contained EEG model of speech-to-language transformation; (2) EEG modeling is more accurate when including prior speech context, which pure categorical models do not support; (3) EEG signatures of speech-to-language transformation depend on listener-attention." @default.
- W4387020154 created "2023-09-26" @default.
- W4387020154 creator A5010687192 @default.
- W4387020154 creator A5035541211 @default.
- W4387020154 creator A5074790393 @default.
- W4387020154 date "2023-09-24" @default.
- W4387020154 modified "2023-09-30" @default.
- W4387020154 title "Context and Attention Shape Electrophysiological Correlates of Speech-to-Language Transformation" @default.
- W4387020154 cites W1974932989 @default.
- W4387020154 cites W1997913619 @default.
- W4387020154 cites W2000387713 @default.
- W4387020154 cites W2005066437 @default.
- W4387020154 cites W2075012882 @default.
- W4387020154 cites W2079207700 @default.
- W4387020154 cites W2082183045 @default.
- W4387020154 cites W2082451326 @default.
- W4387020154 cites W2088984420 @default.
- W4387020154 cites W2104117351 @default.
- W4387020154 cites W2119728020 @default.
- W4387020154 cites W2128984459 @default.
- W4387020154 cites W2135704565 @default.
- W4387020154 cites W2137172783 @default.
- W4387020154 cites W2138164020 @default.
- W4387020154 cites W2141138276 @default.
- W4387020154 cites W2147843279 @default.
- W4387020154 cites W2156899532 @default.
- W4387020154 cites W2157184970 @default.
- W4387020154 cites W2164356097 @default.
- W4387020154 cites W2179376720 @default.
- W4387020154 cites W2250539671 @default.
- W4387020154 cites W2622627557 @default.
- W4387020154 cites W2756894032 @default.
- W4387020154 cites W2805003518 @default.
- W4387020154 cites W2807663970 @default.
- W4387020154 cites W2887972576 @default.
- W4387020154 cites W2891765071 @default.
- W4387020154 cites W2903324034 @default.
- W4387020154 cites W2945038412 @default.
- W4387020154 cites W2945512704 @default.
- W4387020154 cites W2964812680 @default.
- W4387020154 cites W2990790638 @default.
- W4387020154 cites W3095159483 @default.
- W4387020154 cites W3134212080 @default.
- W4387020154 cites W3136656403 @default.
- W4387020154 cites W3193706553 @default.
- W4387020154 cites W3210923133 @default.
- W4387020154 cites W4220949944 @default.
- W4387020154 cites W4226380987 @default.
- W4387020154 cites W4289638300 @default.
- W4387020154 cites W4297995647 @default.
- W4387020154 cites W4322766928 @default.
- W4387020154 cites W4382279906 @default.
- W4387020154 cites W4384283311 @default.
- W4387020154 doi "https://doi.org/10.1101/2023.09.24.559177" @default.
- W4387020154 hasPublicationYear "2023" @default.
- W4387020154 type Work @default.
- W4387020154 citedByCount "0" @default.
- W4387020154 crossrefType "posted-content" @default.
- W4387020154 hasAuthorship W4387020154A5010687192 @default.
- W4387020154 hasAuthorship W4387020154A5035541211 @default.
- W4387020154 hasAuthorship W4387020154A5074790393 @default.
- W4387020154 hasBestOaLocation W43870201541 @default.
- W4387020154 hasConcept C104317684 @default.
- W4387020154 hasConcept C119857082 @default.
- W4387020154 hasConcept C151730666 @default.
- W4387020154 hasConcept C154945302 @default.
- W4387020154 hasConcept C15744967 @default.
- W4387020154 hasConcept C169760540 @default.
- W4387020154 hasConcept C185592680 @default.
- W4387020154 hasConcept C204241405 @default.
- W4387020154 hasConcept C204321447 @default.
- W4387020154 hasConcept C2779343474 @default.
- W4387020154 hasConcept C28490314 @default.
- W4387020154 hasConcept C41008148 @default.
- W4387020154 hasConcept C522805319 @default.
- W4387020154 hasConcept C5274069 @default.
- W4387020154 hasConcept C55493867 @default.
- W4387020154 hasConcept C86803240 @default.
- W4387020154 hasConcept C94124525 @default.
- W4387020154 hasConceptScore W4387020154C104317684 @default.
- W4387020154 hasConceptScore W4387020154C119857082 @default.
- W4387020154 hasConceptScore W4387020154C151730666 @default.
- W4387020154 hasConceptScore W4387020154C154945302 @default.
- W4387020154 hasConceptScore W4387020154C15744967 @default.
- W4387020154 hasConceptScore W4387020154C169760540 @default.
- W4387020154 hasConceptScore W4387020154C185592680 @default.
- W4387020154 hasConceptScore W4387020154C204241405 @default.
- W4387020154 hasConceptScore W4387020154C204321447 @default.
- W4387020154 hasConceptScore W4387020154C2779343474 @default.
- W4387020154 hasConceptScore W4387020154C28490314 @default.
- W4387020154 hasConceptScore W4387020154C41008148 @default.
- W4387020154 hasConceptScore W4387020154C522805319 @default.
- W4387020154 hasConceptScore W4387020154C5274069 @default.
- W4387020154 hasConceptScore W4387020154C55493867 @default.
- W4387020154 hasConceptScore W4387020154C86803240 @default.
- W4387020154 hasConceptScore W4387020154C94124525 @default.
- W4387020154 hasLocation W43870201541 @default.
- W4387020154 hasOpenAccess W4387020154 @default.
- W4387020154 hasPrimaryLocation W43870201541 @default.
- W4387020154 hasRelatedWork W2040397200 @default.