Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387022347> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4387022347 endingPage "156" @default.
- W4387022347 startingPage "143" @default.
- W4387022347 abstract "This paper delves into the critical importance of understanding emotions from a person’s perspective, and the potential for machines to improve human interaction by possessing this ability. While existing research on emotion recognition in computer vision has mainly focused on analyzing facial expressions and categorizing them into six basic emotions, it is important to recognize that contextual factors also play a crucial role in emotion perception. Emotions are not just limited to facial expressions but also include body language, the pitch of voice, and other nonverbal cues. We then trained a convolutional neural network model on this vast dataset and demonstrated the importance of incorporating context to recognize rich information about emotional states in images. Our model surpasses previous benchmarks and confirms the value of contextual information in emotion recognition. We have used the Emotions in Context (EMOTIC) [1] and Body Language Dataset (BoLD) [2] datasets for recognizing emotions by taking their contextual information into account. By incorporating contextual factors, machines can enhance human interaction by accurately recognizing emotional states in various situations. Based on the experiments, we recognized that the emotions of engagement (93.62%), confidence (92.41%), and excitement (95.93%) were predicted accurately. In contrast, the emotions of yearning, disapproval, and pain had low classification accuracy, with less than 40% accuracy. Lastly, this paper highlights the importance of understanding emotions beyond just facial expressions and provides a benchmark for emotion recognition in a contextual setting." @default.
- W4387022347 created "2023-09-26" @default.
- W4387022347 creator A5025539382 @default.
- W4387022347 creator A5031634244 @default.
- W4387022347 creator A5042531474 @default.
- W4387022347 creator A5070935465 @default.
- W4387022347 date "2023-01-01" @default.
- W4387022347 modified "2023-10-02" @default.
- W4387022347 title "CERDL: Contextual Emotion Recognition Analysis Using Deep Learning" @default.
- W4387022347 cites W2055911634 @default.
- W4387022347 cites W2102697000 @default.
- W4387022347 cites W2404368331 @default.
- W4387022347 cites W2578895956 @default.
- W4387022347 cites W2740693122 @default.
- W4387022347 cites W2766777441 @default.
- W4387022347 cites W2888816955 @default.
- W4387022347 cites W2889717020 @default.
- W4387022347 cites W2963943905 @default.
- W4387022347 cites W2964751875 @default.
- W4387022347 cites W3001529617 @default.
- W4387022347 cites W3026298314 @default.
- W4387022347 cites W3034520808 @default.
- W4387022347 cites W3137284029 @default.
- W4387022347 cites W3176899168 @default.
- W4387022347 cites W3203054839 @default.
- W4387022347 cites W4214823184 @default.
- W4387022347 cites W4291741556 @default.
- W4387022347 cites W4295008533 @default.
- W4387022347 cites W4306149564 @default.
- W4387022347 cites W4309568943 @default.
- W4387022347 cites W4313646621 @default.
- W4387022347 doi "https://doi.org/10.1007/978-3-031-43461-7_15" @default.
- W4387022347 hasPublicationYear "2023" @default.
- W4387022347 type Work @default.
- W4387022347 citedByCount "0" @default.
- W4387022347 crossrefType "book-chapter" @default.
- W4387022347 hasAuthorship W4387022347A5025539382 @default.
- W4387022347 hasAuthorship W4387022347A5031634244 @default.
- W4387022347 hasAuthorship W4387022347A5042531474 @default.
- W4387022347 hasAuthorship W4387022347A5070935465 @default.
- W4387022347 hasConcept C12713177 @default.
- W4387022347 hasConcept C145633318 @default.
- W4387022347 hasConcept C151730666 @default.
- W4387022347 hasConcept C154945302 @default.
- W4387022347 hasConcept C15744967 @default.
- W4387022347 hasConcept C169760540 @default.
- W4387022347 hasConcept C180747234 @default.
- W4387022347 hasConcept C195704467 @default.
- W4387022347 hasConcept C20253421 @default.
- W4387022347 hasConcept C206310091 @default.
- W4387022347 hasConcept C207347870 @default.
- W4387022347 hasConcept C26760741 @default.
- W4387022347 hasConcept C2776141551 @default.
- W4387022347 hasConcept C2777438025 @default.
- W4387022347 hasConcept C2779343474 @default.
- W4387022347 hasConcept C41008148 @default.
- W4387022347 hasConcept C46312422 @default.
- W4387022347 hasConcept C66402592 @default.
- W4387022347 hasConcept C81363708 @default.
- W4387022347 hasConcept C86803240 @default.
- W4387022347 hasConceptScore W4387022347C12713177 @default.
- W4387022347 hasConceptScore W4387022347C145633318 @default.
- W4387022347 hasConceptScore W4387022347C151730666 @default.
- W4387022347 hasConceptScore W4387022347C154945302 @default.
- W4387022347 hasConceptScore W4387022347C15744967 @default.
- W4387022347 hasConceptScore W4387022347C169760540 @default.
- W4387022347 hasConceptScore W4387022347C180747234 @default.
- W4387022347 hasConceptScore W4387022347C195704467 @default.
- W4387022347 hasConceptScore W4387022347C20253421 @default.
- W4387022347 hasConceptScore W4387022347C206310091 @default.
- W4387022347 hasConceptScore W4387022347C207347870 @default.
- W4387022347 hasConceptScore W4387022347C26760741 @default.
- W4387022347 hasConceptScore W4387022347C2776141551 @default.
- W4387022347 hasConceptScore W4387022347C2777438025 @default.
- W4387022347 hasConceptScore W4387022347C2779343474 @default.
- W4387022347 hasConceptScore W4387022347C41008148 @default.
- W4387022347 hasConceptScore W4387022347C46312422 @default.
- W4387022347 hasConceptScore W4387022347C66402592 @default.
- W4387022347 hasConceptScore W4387022347C81363708 @default.
- W4387022347 hasConceptScore W4387022347C86803240 @default.
- W4387022347 hasLocation W43870223471 @default.
- W4387022347 hasOpenAccess W4387022347 @default.
- W4387022347 hasPrimaryLocation W43870223471 @default.
- W4387022347 hasRelatedWork W2130803403 @default.
- W4387022347 hasRelatedWork W2149429218 @default.
- W4387022347 hasRelatedWork W2258389206 @default.
- W4387022347 hasRelatedWork W2361407266 @default.
- W4387022347 hasRelatedWork W2370043840 @default.
- W4387022347 hasRelatedWork W2377538404 @default.
- W4387022347 hasRelatedWork W2558686327 @default.
- W4387022347 hasRelatedWork W3087760170 @default.
- W4387022347 hasRelatedWork W3216964407 @default.
- W4387022347 hasRelatedWork W4292794032 @default.
- W4387022347 isParatext "false" @default.
- W4387022347 isRetracted "false" @default.
- W4387022347 workType "book-chapter" @default.