Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387023182> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4387023182 abstract "The number of insurgents in our nation today is significantly rising each day, and the majority of those affected are living as Internally Displayed Persons (IDP) in various IDP camps. These people experience a variety of health problems as a result of numerous factors. Due to financial difficulties and a lack of accessibility to healthcare facilities and medical professionals, these health risk factors may occasionally go undetected for long periods. BMI excesses, such as those in the underweight, overweight, and obese categories, are linked to several health issues, including low birth weight, poor quality of life, diabetes mellitus, cardiovascular diseases, and higher mortality. In the context of this paper, identifying the health status of IDPs depends critically on human body weight. For people living in IDP camps, early detection of the weight categories like underweight, overweight, and obese people is crucial because if not, they will be an early death or other health complications. To reduce mortality rates and other health complications that may result from improper and lately identifying underweight, overweight, and obese members in IDP camps, the researcher collect Datasets from the IDP camps, trained, and developed a Random Forest ensemble model of supervised learning that will aids the medical practitioner in early detection and prediction of the weight category of IDPs. After hyper-parameter tuning and feature selection, the Random forest machine learning algorithms identify three significant parameters from the dataset's original 10 parameters to use as the model parameter. The highest accuracy obtained was 92% on the test dataset and 96% on the training dataset for the Random Forest (RF) Classifier using 3 features, while the accuracy of 83% was obtained on the test dataset and 87% on the training dataset for the RF Classifier using 10 features." @default.
- W4387023182 created "2023-09-26" @default.
- W4387023182 creator A5092157031 @default.
- W4387023182 date "2023-09-25" @default.
- W4387023182 modified "2023-10-06" @default.
- W4387023182 title "Random Forest Ensemble Machine Learning Model for Early Detection and Prediction of Weight Category" @default.
- W4387023182 doi "https://doi.org/10.47852/bonviewjdsis32021149" @default.
- W4387023182 hasPublicationYear "2023" @default.
- W4387023182 type Work @default.
- W4387023182 citedByCount "0" @default.
- W4387023182 crossrefType "journal-article" @default.
- W4387023182 hasAuthorship W4387023182A5092157031 @default.
- W4387023182 hasBestOaLocation W43870231821 @default.
- W4387023182 hasConcept C126322002 @default.
- W4387023182 hasConcept C154945302 @default.
- W4387023182 hasConcept C166957645 @default.
- W4387023182 hasConcept C169258074 @default.
- W4387023182 hasConcept C205649164 @default.
- W4387023182 hasConcept C2779343474 @default.
- W4387023182 hasConcept C2780586474 @default.
- W4387023182 hasConcept C2781121325 @default.
- W4387023182 hasConcept C41008148 @default.
- W4387023182 hasConcept C511355011 @default.
- W4387023182 hasConcept C71924100 @default.
- W4387023182 hasConcept C74909509 @default.
- W4387023182 hasConcept C99454951 @default.
- W4387023182 hasConceptScore W4387023182C126322002 @default.
- W4387023182 hasConceptScore W4387023182C154945302 @default.
- W4387023182 hasConceptScore W4387023182C166957645 @default.
- W4387023182 hasConceptScore W4387023182C169258074 @default.
- W4387023182 hasConceptScore W4387023182C205649164 @default.
- W4387023182 hasConceptScore W4387023182C2779343474 @default.
- W4387023182 hasConceptScore W4387023182C2780586474 @default.
- W4387023182 hasConceptScore W4387023182C2781121325 @default.
- W4387023182 hasConceptScore W4387023182C41008148 @default.
- W4387023182 hasConceptScore W4387023182C511355011 @default.
- W4387023182 hasConceptScore W4387023182C71924100 @default.
- W4387023182 hasConceptScore W4387023182C74909509 @default.
- W4387023182 hasConceptScore W4387023182C99454951 @default.
- W4387023182 hasLocation W43870231821 @default.
- W4387023182 hasOpenAccess W4387023182 @default.
- W4387023182 hasPrimaryLocation W43870231821 @default.
- W4387023182 hasRelatedWork W130814904 @default.
- W4387023182 hasRelatedWork W1960749805 @default.
- W4387023182 hasRelatedWork W2065963645 @default.
- W4387023182 hasRelatedWork W2103497017 @default.
- W4387023182 hasRelatedWork W2358134443 @default.
- W4387023182 hasRelatedWork W2401144611 @default.
- W4387023182 hasRelatedWork W2520113602 @default.
- W4387023182 hasRelatedWork W4242945315 @default.
- W4387023182 hasRelatedWork W1897789714 @default.
- W4387023182 hasRelatedWork W2339954823 @default.
- W4387023182 isParatext "false" @default.
- W4387023182 isRetracted "false" @default.
- W4387023182 workType "article" @default.