Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387029002> ?p ?o ?g. }
- W4387029002 endingPage "199" @default.
- W4387029002 startingPage "183" @default.
- W4387029002 abstract "Multiple object tracking (MOT) is a technique of localizing numerous moving objects over time in a video clip. There are several uses for MOT, including augmented reality, traffic management, medical imaging, surveillance and security, video editing, and video transmission and compression. Generally, MOT is a two-step process that includes object detection and association. Initially, a distinct identifier is allocated to each identified object in the first frame, and then motion trajectories of the detected objects were extracted. All the objects are detected, and their track is preserved in every frame that follows in an image stream. Afterward, the trajectories of each detected object are determined in the existing frame based on its position in the previous frame. MOT aims to determine improved object connections to increase the affinity between objects in the subsequent frames. But exact multiple object tracing is extremely difficult. The challenges are either due to object deformation, namely, pose variation, occlusion, and background clutter, or due to the dynamic environmental variations, namely, fog, snow, rain, and dust particles. In order to cope with these challenges, plenty of work is suggested exploiting deeplearning (DL). In this chapter, we have reviewed the various DL-based MOT algorithms utilized for object detection and tracking. Salient features of these algorithms are reviewed along with performance analysis. In addition, recent performance metrics for MOT algorithms performance evaluation are exhaustively analysed for their application to real-world." @default.
- W4387029002 created "2023-09-26" @default.
- W4387029002 creator A5012499804 @default.
- W4387029002 creator A5046355585 @default.
- W4387029002 creator A5092938198 @default.
- W4387029002 date "2023-01-01" @default.
- W4387029002 modified "2023-09-26" @default.
- W4387029002 title "Deep Learning-Based Multi-object Tracking" @default.
- W4387029002 cites W1918798105 @default.
- W4387029002 cites W2037537950 @default.
- W4387029002 cites W2049939318 @default.
- W4387029002 cites W2067413678 @default.
- W4387029002 cites W2105621472 @default.
- W4387029002 cites W2110379134 @default.
- W4387029002 cites W2127964009 @default.
- W4387029002 cites W2160225842 @default.
- W4387029002 cites W2165032604 @default.
- W4387029002 cites W2308318555 @default.
- W4387029002 cites W2412926690 @default.
- W4387029002 cites W2564997479 @default.
- W4387029002 cites W2573859949 @default.
- W4387029002 cites W2757783948 @default.
- W4387029002 cites W2884367402 @default.
- W4387029002 cites W2950565945 @default.
- W4387029002 cites W2966535964 @default.
- W4387029002 cites W2985031189 @default.
- W4387029002 cites W2988916019 @default.
- W4387029002 cites W2994928934 @default.
- W4387029002 cites W3015573086 @default.
- W4387029002 cites W3020385703 @default.
- W4387029002 cites W3021319375 @default.
- W4387029002 cites W3042723358 @default.
- W4387029002 cites W3043995050 @default.
- W4387029002 cites W3049122368 @default.
- W4387029002 cites W3087996638 @default.
- W4387029002 cites W3088682891 @default.
- W4387029002 cites W3095400556 @default.
- W4387029002 cites W3110144974 @default.
- W4387029002 cites W3154571917 @default.
- W4387029002 cites W3184486150 @default.
- W4387029002 cites W4220690698 @default.
- W4387029002 cites W4223515962 @default.
- W4387029002 cites W4225595226 @default.
- W4387029002 doi "https://doi.org/10.1007/978-981-99-3288-7_8" @default.
- W4387029002 hasPublicationYear "2023" @default.
- W4387029002 type Work @default.
- W4387029002 citedByCount "0" @default.
- W4387029002 crossrefType "book-chapter" @default.
- W4387029002 hasAuthorship W4387029002A5012499804 @default.
- W4387029002 hasAuthorship W4387029002A5046355585 @default.
- W4387029002 hasAuthorship W4387029002A5092938198 @default.
- W4387029002 hasConcept C111919701 @default.
- W4387029002 hasConcept C126042441 @default.
- W4387029002 hasConcept C132094186 @default.
- W4387029002 hasConcept C138673069 @default.
- W4387029002 hasConcept C153180895 @default.
- W4387029002 hasConcept C154945302 @default.
- W4387029002 hasConcept C15744967 @default.
- W4387029002 hasConcept C19417346 @default.
- W4387029002 hasConcept C202474056 @default.
- W4387029002 hasConcept C2775936607 @default.
- W4387029002 hasConcept C2776151529 @default.
- W4387029002 hasConcept C2781238097 @default.
- W4387029002 hasConcept C31972630 @default.
- W4387029002 hasConcept C41008148 @default.
- W4387029002 hasConcept C554190296 @default.
- W4387029002 hasConcept C76155785 @default.
- W4387029002 hasConceptScore W4387029002C111919701 @default.
- W4387029002 hasConceptScore W4387029002C126042441 @default.
- W4387029002 hasConceptScore W4387029002C132094186 @default.
- W4387029002 hasConceptScore W4387029002C138673069 @default.
- W4387029002 hasConceptScore W4387029002C153180895 @default.
- W4387029002 hasConceptScore W4387029002C154945302 @default.
- W4387029002 hasConceptScore W4387029002C15744967 @default.
- W4387029002 hasConceptScore W4387029002C19417346 @default.
- W4387029002 hasConceptScore W4387029002C202474056 @default.
- W4387029002 hasConceptScore W4387029002C2775936607 @default.
- W4387029002 hasConceptScore W4387029002C2776151529 @default.
- W4387029002 hasConceptScore W4387029002C2781238097 @default.
- W4387029002 hasConceptScore W4387029002C31972630 @default.
- W4387029002 hasConceptScore W4387029002C41008148 @default.
- W4387029002 hasConceptScore W4387029002C554190296 @default.
- W4387029002 hasConceptScore W4387029002C76155785 @default.
- W4387029002 hasLocation W43870290021 @default.
- W4387029002 hasOpenAccess W4387029002 @default.
- W4387029002 hasPrimaryLocation W43870290021 @default.
- W4387029002 hasRelatedWork W1497101000 @default.
- W4387029002 hasRelatedWork W1578117154 @default.
- W4387029002 hasRelatedWork W1966005655 @default.
- W4387029002 hasRelatedWork W2079531124 @default.
- W4387029002 hasRelatedWork W2095705906 @default.
- W4387029002 hasRelatedWork W2146154945 @default.
- W4387029002 hasRelatedWork W2385949326 @default.
- W4387029002 hasRelatedWork W2783980107 @default.
- W4387029002 hasRelatedWork W3177406559 @default.
- W4387029002 hasRelatedWork W1893424669 @default.
- W4387029002 isParatext "false" @default.
- W4387029002 isRetracted "false" @default.