Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387029706> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4387029706 endingPage "54" @default.
- W4387029706 startingPage "45" @default.
- W4387029706 abstract "Heart disease is very common in today’s day and age, with death rates climbing up the numbers every year. Prediction of heart disease cases is a topic that has been around in the world of data and medical science for many years. The study conducted in this paper makes comparison of the different algorithms that have been used in pattern analysis and prediction of heart diseases. Among the algorithms that have been used in the past included a combination of machine learning and data mining concepts that essentially are derived from statistical analysis and relevant approaches. There are a lot of factors that can be considered when attempting to analytically predict instances of heart diseases, such as age, gender, resting blood pressure etc. Eight such factors have been taken into consideration for carrying out this qualitative comparison. As this study uses a particular data set for extracting results from, the output may vary when implemented over different data sets. The research includes comparisons of Naive Bayes, Decision Tree, Random Forest and Logistic Regression. After multiple implementations, the accuracy in training and testing are obtained and listed down. The observations from implementation of these algorithms over the same dataset indicates that Random Forest and Decision Tree have the highest accuracy in prediction of heart disease based on the dataset that we have provided. Similarly, Naive Bayes has the least accurate results for this scenario under the given contexts." @default.
- W4387029706 created "2023-09-26" @default.
- W4387029706 creator A5025228467 @default.
- W4387029706 creator A5060107495 @default.
- W4387029706 creator A5071415020 @default.
- W4387029706 creator A5092938410 @default.
- W4387029706 creator A5092938411 @default.
- W4387029706 date "2023-10-08" @default.
- W4387029706 modified "2023-09-26" @default.
- W4387029706 title "A Comparative Analysis of Algorithms for Heart Disease Prediction Using Data Mining" @default.
- W4387029706 doi "https://doi.org/10.5815/ijitcs.2023.05.05" @default.
- W4387029706 hasPublicationYear "2023" @default.
- W4387029706 type Work @default.
- W4387029706 citedByCount "0" @default.
- W4387029706 crossrefType "journal-article" @default.
- W4387029706 hasAuthorship W4387029706A5025228467 @default.
- W4387029706 hasAuthorship W4387029706A5060107495 @default.
- W4387029706 hasAuthorship W4387029706A5071415020 @default.
- W4387029706 hasAuthorship W4387029706A5092938410 @default.
- W4387029706 hasAuthorship W4387029706A5092938411 @default.
- W4387029706 hasBestOaLocation W43870297061 @default.
- W4387029706 hasConcept C107673813 @default.
- W4387029706 hasConcept C11413529 @default.
- W4387029706 hasConcept C119857082 @default.
- W4387029706 hasConcept C12267149 @default.
- W4387029706 hasConcept C124101348 @default.
- W4387029706 hasConcept C151956035 @default.
- W4387029706 hasConcept C154945302 @default.
- W4387029706 hasConcept C169258074 @default.
- W4387029706 hasConcept C177264268 @default.
- W4387029706 hasConcept C199360897 @default.
- W4387029706 hasConcept C207201462 @default.
- W4387029706 hasConcept C41008148 @default.
- W4387029706 hasConcept C52001869 @default.
- W4387029706 hasConcept C5481197 @default.
- W4387029706 hasConcept C58489278 @default.
- W4387029706 hasConcept C84525736 @default.
- W4387029706 hasConceptScore W4387029706C107673813 @default.
- W4387029706 hasConceptScore W4387029706C11413529 @default.
- W4387029706 hasConceptScore W4387029706C119857082 @default.
- W4387029706 hasConceptScore W4387029706C12267149 @default.
- W4387029706 hasConceptScore W4387029706C124101348 @default.
- W4387029706 hasConceptScore W4387029706C151956035 @default.
- W4387029706 hasConceptScore W4387029706C154945302 @default.
- W4387029706 hasConceptScore W4387029706C169258074 @default.
- W4387029706 hasConceptScore W4387029706C177264268 @default.
- W4387029706 hasConceptScore W4387029706C199360897 @default.
- W4387029706 hasConceptScore W4387029706C207201462 @default.
- W4387029706 hasConceptScore W4387029706C41008148 @default.
- W4387029706 hasConceptScore W4387029706C52001869 @default.
- W4387029706 hasConceptScore W4387029706C5481197 @default.
- W4387029706 hasConceptScore W4387029706C58489278 @default.
- W4387029706 hasConceptScore W4387029706C84525736 @default.
- W4387029706 hasIssue "5" @default.
- W4387029706 hasLocation W43870297061 @default.
- W4387029706 hasOpenAccess W4387029706 @default.
- W4387029706 hasPrimaryLocation W43870297061 @default.
- W4387029706 hasRelatedWork W3013497550 @default.
- W4387029706 hasRelatedWork W3032901101 @default.
- W4387029706 hasRelatedWork W3036095178 @default.
- W4387029706 hasRelatedWork W3107429030 @default.
- W4387029706 hasRelatedWork W4214951795 @default.
- W4387029706 hasRelatedWork W4229456048 @default.
- W4387029706 hasRelatedWork W4239706975 @default.
- W4387029706 hasRelatedWork W4285225238 @default.
- W4387029706 hasRelatedWork W4292865745 @default.
- W4387029706 hasRelatedWork W4317793305 @default.
- W4387029706 hasVolume "15" @default.
- W4387029706 isParatext "false" @default.
- W4387029706 isRetracted "false" @default.
- W4387029706 workType "article" @default.