Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387030239> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4387030239 abstract "Wildland fire modeling tools can ingest high resolution 3D vegetation models as inputs. However, data used to build the surface fuels in these models is often at a 30-meter resolution, which does not necessarily provide sufficient detail for accurate modeling of fires. Terrestrial laser scans are increasingly being used to collect detailed vegetation data that could be integrated with new approaches to fuel and fire modeling, but manual segmentation of scans is not scalable beyond a small number of scans. There is a need to automatically segment these high resolution point clouds as they are collected in the field, such that they may be leveraged by fuel and fire models for wildland fire response and mitigation and other applied climate science. This paper summarizes our early work on a labeling, visualization and machine learning pipeline for detailed segmentation of fuels. Specific contributions are: (1) a labeling approach involving 3 dimensional segmentation of point clouds using a point cloud processing engine; (2) a visualization approach using a computer graphics engine; and (3) early results from a deep learning modeling approach for fuel segmentation by category (live and dead) and size class (1, 10, 100 and 1000 hour fuels)." @default.
- W4387030239 created "2023-09-26" @default.
- W4387030239 creator A5002534857 @default.
- W4387030239 creator A5014555712 @default.
- W4387030239 creator A5016893251 @default.
- W4387030239 creator A5026470221 @default.
- W4387030239 creator A5028701796 @default.
- W4387030239 creator A5028892792 @default.
- W4387030239 creator A5033996194 @default.
- W4387030239 creator A5042253761 @default.
- W4387030239 creator A5080399869 @default.
- W4387030239 date "2023-10-09" @default.
- W4387030239 modified "2023-10-01" @default.
- W4387030239 title "Visualization and Labeling of Terrestrial LiDAR Data for Three-Dimensional Fuel Classification" @default.
- W4387030239 cites W2998143009 @default.
- W4387030239 cites W4312788649 @default.
- W4387030239 doi "https://doi.org/10.1109/e-science58273.2023.10254841" @default.
- W4387030239 hasPublicationYear "2023" @default.
- W4387030239 type Work @default.
- W4387030239 citedByCount "0" @default.
- W4387030239 crossrefType "proceedings-article" @default.
- W4387030239 hasAuthorship W4387030239A5002534857 @default.
- W4387030239 hasAuthorship W4387030239A5014555712 @default.
- W4387030239 hasAuthorship W4387030239A5016893251 @default.
- W4387030239 hasAuthorship W4387030239A5026470221 @default.
- W4387030239 hasAuthorship W4387030239A5028701796 @default.
- W4387030239 hasAuthorship W4387030239A5028892792 @default.
- W4387030239 hasAuthorship W4387030239A5033996194 @default.
- W4387030239 hasAuthorship W4387030239A5042253761 @default.
- W4387030239 hasAuthorship W4387030239A5080399869 @default.
- W4387030239 hasConcept C127313418 @default.
- W4387030239 hasConcept C131979681 @default.
- W4387030239 hasConcept C154945302 @default.
- W4387030239 hasConcept C199360897 @default.
- W4387030239 hasConcept C202444582 @default.
- W4387030239 hasConcept C33923547 @default.
- W4387030239 hasConcept C36464697 @default.
- W4387030239 hasConcept C41008148 @default.
- W4387030239 hasConcept C43521106 @default.
- W4387030239 hasConcept C51399673 @default.
- W4387030239 hasConcept C62649853 @default.
- W4387030239 hasConcept C77660652 @default.
- W4387030239 hasConcept C89600930 @default.
- W4387030239 hasConcept C9652623 @default.
- W4387030239 hasConceptScore W4387030239C127313418 @default.
- W4387030239 hasConceptScore W4387030239C131979681 @default.
- W4387030239 hasConceptScore W4387030239C154945302 @default.
- W4387030239 hasConceptScore W4387030239C199360897 @default.
- W4387030239 hasConceptScore W4387030239C202444582 @default.
- W4387030239 hasConceptScore W4387030239C33923547 @default.
- W4387030239 hasConceptScore W4387030239C36464697 @default.
- W4387030239 hasConceptScore W4387030239C41008148 @default.
- W4387030239 hasConceptScore W4387030239C43521106 @default.
- W4387030239 hasConceptScore W4387030239C51399673 @default.
- W4387030239 hasConceptScore W4387030239C62649853 @default.
- W4387030239 hasConceptScore W4387030239C77660652 @default.
- W4387030239 hasConceptScore W4387030239C89600930 @default.
- W4387030239 hasConceptScore W4387030239C9652623 @default.
- W4387030239 hasFunder F4320306076 @default.
- W4387030239 hasFunder F4320332603 @default.
- W4387030239 hasFunder F4320338304 @default.
- W4387030239 hasLocation W43870302391 @default.
- W4387030239 hasOpenAccess W4387030239 @default.
- W4387030239 hasPrimaryLocation W43870302391 @default.
- W4387030239 hasRelatedWork W2335177719 @default.
- W4387030239 hasRelatedWork W2976989770 @default.
- W4387030239 hasRelatedWork W3080305507 @default.
- W4387030239 hasRelatedWork W3091155238 @default.
- W4387030239 hasRelatedWork W3165704192 @default.
- W4387030239 hasRelatedWork W4226195147 @default.
- W4387030239 hasRelatedWork W4310264062 @default.
- W4387030239 hasRelatedWork W4312828305 @default.
- W4387030239 hasRelatedWork W4366775409 @default.
- W4387030239 hasRelatedWork W4385977169 @default.
- W4387030239 isParatext "false" @default.
- W4387030239 isRetracted "false" @default.
- W4387030239 workType "article" @default.