Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387033326> ?p ?o ?g. }
- W4387033326 abstract "To assess the value of an 18F-FDG-positron emission tomography/computed tomography (PET/CT)-based machine learning model for distinguishing between adrenal benign nodules (ABNs) and adrenal metastases (AMs) in patients with indeterminate adrenal nodules and extra-adrenal malignancies.A total of 303 patients who underwent 18F-FDG-PET/CT with indeterminate adrenal nodules and extra-adrenal malignancies from March 2015 to June 2021 were included in this retrospective study (training dataset (n = 182): AMs (n = 97), ABNs (n = 85); testing dataset (n = 121): AMs (n = 68), ABNs (n = 55)). The clinical and PET/CT imaging features of the two groups were analyzed. The predictive model and simplified scoring system for distinguishing between AMs and ABNs were built based on clinical and PET/CT risk factors using multivariable logistic regression in the training cohort. The performances of the predictive model and simplified scoring system in both the training and testing cohorts were evaluated by the areas under the receiver operating characteristic curves (AUCs) and calibration curves. The comparison of AUCs was evaluated by the DeLong test.The predictive model included four risk factors: sex, the ratio of the maximum standardized uptake value (SUVmax) of adrenal lesions to the mean liver standardized uptake value, the value on unenhanced CT (CTU), and the clinical stage of extra-adrenal malignancies. The model achieved an AUC of 0.936 with a specificity, sensitivity and accuracy of 0.918, 0.835, and 0.874 in the training dataset, respectively, while it yielded an AUC of 0.931 with a specificity, sensitivity, and accuracy of 1.00, 0.735, and 0.851 in the testing dataset, respectively. The simplified scoring system had comparable diagnostic value to the predictive model in both the training (AUC 0.938, sensitivity: 0.825, specificity 0.953, accuracy 0.885; P = 0.5733) and testing (AUC 0.931, sensitivity 0.735, specificity 1.000, accuracy 0.851; P = 1.00) datasets.Our study showed the potential ability of a machine learning model and a simplified scoring system based on clinical and 18F-FDG-PET/CT imaging features to predict AMs in patients with indeterminate adrenal nodules and extra-adrenal malignancies. The simplified scoring system is simple, convenient, and easy to popularize." @default.
- W4387033326 created "2023-09-27" @default.
- W4387033326 creator A5030312174 @default.
- W4387033326 creator A5051242165 @default.
- W4387033326 creator A5068781452 @default.
- W4387033326 creator A5076822296 @default.
- W4387033326 creator A5078708357 @default.
- W4387033326 date "2023-09-26" @default.
- W4387033326 modified "2023-10-04" @default.
- W4387033326 title "18F-FDG-PET/CT-based machine learning model evaluates indeterminate adrenal nodules in patients with extra-adrenal malignancies" @default.
- W4387033326 cites W1982560966 @default.
- W4387033326 cites W1983342498 @default.
- W4387033326 cites W2000743004 @default.
- W4387033326 cites W2014088484 @default.
- W4387033326 cites W2018257960 @default.
- W4387033326 cites W2054626775 @default.
- W4387033326 cites W2074122924 @default.
- W4387033326 cites W2074985496 @default.
- W4387033326 cites W2079980719 @default.
- W4387033326 cites W2104376522 @default.
- W4387033326 cites W2105886595 @default.
- W4387033326 cites W2114144728 @default.
- W4387033326 cites W2115113482 @default.
- W4387033326 cites W2116404133 @default.
- W4387033326 cites W2116427522 @default.
- W4387033326 cites W2152022617 @default.
- W4387033326 cites W2509707964 @default.
- W4387033326 cites W2565395636 @default.
- W4387033326 cites W2591468408 @default.
- W4387033326 cites W2632518954 @default.
- W4387033326 cites W2737299582 @default.
- W4387033326 cites W2803897563 @default.
- W4387033326 cites W2900358524 @default.
- W4387033326 cites W2903315606 @default.
- W4387033326 cites W3085413261 @default.
- W4387033326 cites W3087170205 @default.
- W4387033326 cites W3101024369 @default.
- W4387033326 cites W3106327733 @default.
- W4387033326 cites W3119005666 @default.
- W4387033326 cites W3135445404 @default.
- W4387033326 cites W4206446171 @default.
- W4387033326 cites W4220693295 @default.
- W4387033326 cites W4226360820 @default.
- W4387033326 cites W4246902738 @default.
- W4387033326 cites W4296828779 @default.
- W4387033326 cites W4297036190 @default.
- W4387033326 doi "https://doi.org/10.1186/s12957-023-03184-6" @default.
- W4387033326 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37749562" @default.
- W4387033326 hasPublicationYear "2023" @default.
- W4387033326 type Work @default.
- W4387033326 citedByCount "0" @default.
- W4387033326 crossrefType "journal-article" @default.
- W4387033326 hasAuthorship W4387033326A5030312174 @default.
- W4387033326 hasAuthorship W4387033326A5051242165 @default.
- W4387033326 hasAuthorship W4387033326A5068781452 @default.
- W4387033326 hasAuthorship W4387033326A5076822296 @default.
- W4387033326 hasAuthorship W4387033326A5078708357 @default.
- W4387033326 hasBestOaLocation W43870333261 @default.
- W4387033326 hasConcept C126322002 @default.
- W4387033326 hasConcept C126838900 @default.
- W4387033326 hasConcept C127077266 @default.
- W4387033326 hasConcept C151956035 @default.
- W4387033326 hasConcept C167135981 @default.
- W4387033326 hasConcept C199374082 @default.
- W4387033326 hasConcept C202444582 @default.
- W4387033326 hasConcept C2775842073 @default.
- W4387033326 hasConcept C2989005 @default.
- W4387033326 hasConcept C33923547 @default.
- W4387033326 hasConcept C58471807 @default.
- W4387033326 hasConcept C71924100 @default.
- W4387033326 hasConcept C94624232 @default.
- W4387033326 hasConceptScore W4387033326C126322002 @default.
- W4387033326 hasConceptScore W4387033326C126838900 @default.
- W4387033326 hasConceptScore W4387033326C127077266 @default.
- W4387033326 hasConceptScore W4387033326C151956035 @default.
- W4387033326 hasConceptScore W4387033326C167135981 @default.
- W4387033326 hasConceptScore W4387033326C199374082 @default.
- W4387033326 hasConceptScore W4387033326C202444582 @default.
- W4387033326 hasConceptScore W4387033326C2775842073 @default.
- W4387033326 hasConceptScore W4387033326C2989005 @default.
- W4387033326 hasConceptScore W4387033326C33923547 @default.
- W4387033326 hasConceptScore W4387033326C58471807 @default.
- W4387033326 hasConceptScore W4387033326C71924100 @default.
- W4387033326 hasConceptScore W4387033326C94624232 @default.
- W4387033326 hasIssue "1" @default.
- W4387033326 hasLocation W43870333261 @default.
- W4387033326 hasLocation W43870333262 @default.
- W4387033326 hasOpenAccess W4387033326 @default.
- W4387033326 hasPrimaryLocation W43870333261 @default.
- W4387033326 hasRelatedWork W1971265461 @default.
- W4387033326 hasRelatedWork W2029854421 @default.
- W4387033326 hasRelatedWork W2070705913 @default.
- W4387033326 hasRelatedWork W2138033649 @default.
- W4387033326 hasRelatedWork W2144454494 @default.
- W4387033326 hasRelatedWork W2909852936 @default.
- W4387033326 hasRelatedWork W2914849423 @default.
- W4387033326 hasRelatedWork W2951337402 @default.
- W4387033326 hasRelatedWork W3041782031 @default.
- W4387033326 hasRelatedWork W4386945185 @default.
- W4387033326 hasVolume "21" @default.