Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387033806> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4387033806 abstract "Bayesian network (BN) models are increasingly used as tools to support probabilistic environmental risk assessments (ERA), as they can better account for uncertainty compared to the simpler approaches commonly used in traditional ERA. We used BNs as meta-models to link various sources of information in a probabilistic framework, to predict the risk of pesticides to aquatic communities under given scenarios. The research focused on rice fields surrounding a Spanish Natural Park Albufera, considering three selected pesticides: acetamiprid (insecticide), MCPA (herbicide), and azoxystrobin (fungicide). The developed BN linked the inputs and outputs of two pesticide models: a process-based exposure model (RICEWQ), and probabilistic effects model (PERPEST) using case-based reasoning with data from microcosm and mesocosm experiments. The model characterised risk at three levels in a hierarchy: biological endpoints (e.g., molluscs, zooplankton, insects, etc.), endpoint groups (plants, invertebrates, vertebrates, and community processes), and community. The pesticide risk to a biological endpoint was characterised as the probability of an effect for a given pesticide concentration interval. The risk to an endpoint group was calculated as the joint probability of effect on any of the endpoints in the group. Likewise, community-level risk was calculated as the joint probability of any of the endpoint groups being affected. This approach enabled comparison of risk to endpoint groups across different pesticide types. For example, in a scenario for year 2050, the predicted risk of the insecticide to the community (40% probability of effect) was dominated by the risk to invertebrates (36% risk). In contrast, herbicide-related risk to the community (63%) was resulting from risk to both plants (35%) and invertebrates (38%); the latter might here represent indirect effects of toxicity through the food chain. This novel approach combines the quantification of spatial variability of exposure with probabilistic risk prediction for different components of aquatic ecosystems." @default.
- W4387033806 created "2023-09-27" @default.
- W4387033806 creator A5017164499 @default.
- W4387033806 creator A5032240945 @default.
- W4387033806 creator A5070709182 @default.
- W4387033806 creator A5076945768 @default.
- W4387033806 creator A5079091430 @default.
- W4387033806 creator A5079406370 @default.
- W4387033806 creator A5089832833 @default.
- W4387033806 date "2023-09-26" @default.
- W4387033806 modified "2023-09-27" @default.
- W4387033806 title "Using a Bayesian network model to predict effects of pesticides on aquatic community endpoints in a rice field – A southern European case study" @default.
- W4387033806 doi "https://doi.org/10.1002/etc.5755" @default.
- W4387033806 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37750580" @default.
- W4387033806 hasPublicationYear "2023" @default.
- W4387033806 type Work @default.
- W4387033806 citedByCount "0" @default.
- W4387033806 crossrefType "journal-article" @default.
- W4387033806 hasAuthorship W4387033806A5017164499 @default.
- W4387033806 hasAuthorship W4387033806A5032240945 @default.
- W4387033806 hasAuthorship W4387033806A5070709182 @default.
- W4387033806 hasAuthorship W4387033806A5076945768 @default.
- W4387033806 hasAuthorship W4387033806A5079091430 @default.
- W4387033806 hasAuthorship W4387033806A5079406370 @default.
- W4387033806 hasAuthorship W4387033806A5089832833 @default.
- W4387033806 hasConcept C105795698 @default.
- W4387033806 hasConcept C12174686 @default.
- W4387033806 hasConcept C161176658 @default.
- W4387033806 hasConcept C18903297 @default.
- W4387033806 hasConcept C33070731 @default.
- W4387033806 hasConcept C33724603 @default.
- W4387033806 hasConcept C33923547 @default.
- W4387033806 hasConcept C38652104 @default.
- W4387033806 hasConcept C39432304 @default.
- W4387033806 hasConcept C41008148 @default.
- W4387033806 hasConcept C41426520 @default.
- W4387033806 hasConcept C86803240 @default.
- W4387033806 hasConceptScore W4387033806C105795698 @default.
- W4387033806 hasConceptScore W4387033806C12174686 @default.
- W4387033806 hasConceptScore W4387033806C161176658 @default.
- W4387033806 hasConceptScore W4387033806C18903297 @default.
- W4387033806 hasConceptScore W4387033806C33070731 @default.
- W4387033806 hasConceptScore W4387033806C33724603 @default.
- W4387033806 hasConceptScore W4387033806C33923547 @default.
- W4387033806 hasConceptScore W4387033806C38652104 @default.
- W4387033806 hasConceptScore W4387033806C39432304 @default.
- W4387033806 hasConceptScore W4387033806C41008148 @default.
- W4387033806 hasConceptScore W4387033806C41426520 @default.
- W4387033806 hasConceptScore W4387033806C86803240 @default.
- W4387033806 hasLocation W43870338061 @default.
- W4387033806 hasLocation W43870338062 @default.
- W4387033806 hasOpenAccess W4387033806 @default.
- W4387033806 hasPrimaryLocation W43870338061 @default.
- W4387033806 hasRelatedWork W1895884060 @default.
- W4387033806 hasRelatedWork W2014686324 @default.
- W4387033806 hasRelatedWork W2018932231 @default.
- W4387033806 hasRelatedWork W2032352788 @default.
- W4387033806 hasRelatedWork W2090507381 @default.
- W4387033806 hasRelatedWork W2359862536 @default.
- W4387033806 hasRelatedWork W2414796793 @default.
- W4387033806 hasRelatedWork W2754569041 @default.
- W4387033806 hasRelatedWork W3126842734 @default.
- W4387033806 hasRelatedWork W4309516076 @default.
- W4387033806 isParatext "false" @default.
- W4387033806 isRetracted "false" @default.
- W4387033806 workType "article" @default.