Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387045063> ?p ?o ?g. }
- W4387045063 endingPage "131" @default.
- W4387045063 startingPage "131" @default.
- W4387045063 abstract "Abstract Cosmic voids are the largest and most underdense structures in the Universe. Their properties have been shown to encode precious information about the laws and constituents of the Universe. We show that machine-learning techniques can unlock the information in void features for cosmological parameter inference. We rely on thousands of void catalogs from the GIGANTES data set, where every catalog contains an average of 11,000 voids from a volume of <?CDATA $1,{left({h}^{-1},mathrm{Gpc}right)}^{3}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mn>1</mml:mn> <mml:mspace width=0.25em /> <mml:msup> <mml:mrow> <mml:mfenced close=) open=(> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>h</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width=0.25em /> <mml:mi>Gpc</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> </mml:math> . We focus on three properties of cosmic voids: ellipticity, density contrast, and radius. We train (1) fully connected neural networks on histograms from individual void properties and (2) deep sets from void catalogs to perform likelihood-free inference on the value of cosmological parameters. We find that our best models are able to constrain the value of Ω m , σ 8 , and n s with mean relative errors of 10%, 4%, and 3%, respectively, without using any spatial information from the void catalogs. Our results provide an illustration for the use of machine learning to constrain cosmology with voids." @default.
- W4387045063 created "2023-09-27" @default.
- W4387045063 creator A5002061021 @default.
- W4387045063 creator A5050309898 @default.
- W4387045063 creator A5082120727 @default.
- W4387045063 creator A5092943108 @default.
- W4387045063 date "2023-09-26" @default.
- W4387045063 modified "2023-10-17" @default.
- W4387045063 title "Machine-learning Cosmology from Void Properties" @default.
- W4387045063 cites W109761076 @default.
- W4387045063 cites W1607535394 @default.
- W4387045063 cites W1750726843 @default.
- W4387045063 cites W1776013471 @default.
- W4387045063 cites W1904860091 @default.
- W4387045063 cites W1969518849 @default.
- W4387045063 cites W1972544964 @default.
- W4387045063 cites W1980106959 @default.
- W4387045063 cites W1993057465 @default.
- W4387045063 cites W2005323299 @default.
- W4387045063 cites W2012974588 @default.
- W4387045063 cites W2019372364 @default.
- W4387045063 cites W2024672874 @default.
- W4387045063 cites W2026711574 @default.
- W4387045063 cites W2045515897 @default.
- W4387045063 cites W2047065296 @default.
- W4387045063 cites W2049654426 @default.
- W4387045063 cites W2070820850 @default.
- W4387045063 cites W2070842017 @default.
- W4387045063 cites W2092364544 @default.
- W4387045063 cites W2103988373 @default.
- W4387045063 cites W2116124126 @default.
- W4387045063 cites W2118569113 @default.
- W4387045063 cites W2120947878 @default.
- W4387045063 cites W2151713275 @default.
- W4387045063 cites W2284361673 @default.
- W4387045063 cites W2476602643 @default.
- W4387045063 cites W2501864044 @default.
- W4387045063 cites W2763865221 @default.
- W4387045063 cites W2840137645 @default.
- W4387045063 cites W2903574070 @default.
- W4387045063 cites W2912647079 @default.
- W4387045063 cites W2947451563 @default.
- W4387045063 cites W2950103104 @default.
- W4387045063 cites W2964153638 @default.
- W4387045063 cites W3023513537 @default.
- W4387045063 cites W3045789577 @default.
- W4387045063 cites W3080529233 @default.
- W4387045063 cites W3084283614 @default.
- W4387045063 cites W3098763711 @default.
- W4387045063 cites W3101799120 @default.
- W4387045063 cites W3104133752 @default.
- W4387045063 cites W3104385827 @default.
- W4387045063 cites W3104829914 @default.
- W4387045063 cites W3106323627 @default.
- W4387045063 cites W3113036851 @default.
- W4387045063 cites W3127589372 @default.
- W4387045063 cites W3135385966 @default.
- W4387045063 cites W3179131474 @default.
- W4387045063 cites W3199165652 @default.
- W4387045063 cites W3211712200 @default.
- W4387045063 cites W4239339957 @default.
- W4387045063 cites W4250310729 @default.
- W4387045063 cites W4281567456 @default.
- W4387045063 cites W4288079944 @default.
- W4387045063 cites W4301394606 @default.
- W4387045063 cites W4311370693 @default.
- W4387045063 cites W4313485267 @default.
- W4387045063 cites W4321092862 @default.
- W4387045063 cites W4362568736 @default.
- W4387045063 cites W4377987827 @default.
- W4387045063 cites W4385446361 @default.
- W4387045063 cites W4385877867 @default.
- W4387045063 cites W899095317 @default.
- W4387045063 doi "https://doi.org/10.3847/1538-4357/aceaf6" @default.
- W4387045063 hasPublicationYear "2023" @default.
- W4387045063 type Work @default.
- W4387045063 citedByCount "0" @default.
- W4387045063 crossrefType "journal-article" @default.
- W4387045063 hasAuthorship W4387045063A5002061021 @default.
- W4387045063 hasAuthorship W4387045063A5050309898 @default.
- W4387045063 hasAuthorship W4387045063A5082120727 @default.
- W4387045063 hasAuthorship W4387045063A5092943108 @default.
- W4387045063 hasBestOaLocation W43870450631 @default.
- W4387045063 hasConcept C11413529 @default.
- W4387045063 hasConcept C121332964 @default.
- W4387045063 hasConcept C154945302 @default.
- W4387045063 hasConcept C159985019 @default.
- W4387045063 hasConcept C192562407 @default.
- W4387045063 hasConcept C26405456 @default.
- W4387045063 hasConcept C2779772531 @default.
- W4387045063 hasConcept C41008148 @default.
- W4387045063 hasConcept C44870925 @default.
- W4387045063 hasConceptScore W4387045063C11413529 @default.
- W4387045063 hasConceptScore W4387045063C121332964 @default.
- W4387045063 hasConceptScore W4387045063C154945302 @default.
- W4387045063 hasConceptScore W4387045063C159985019 @default.
- W4387045063 hasConceptScore W4387045063C192562407 @default.
- W4387045063 hasConceptScore W4387045063C26405456 @default.