Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387046304> ?p ?o ?g. }
- W4387046304 endingPage "111028" @default.
- W4387046304 startingPage "111028" @default.
- W4387046304 abstract "Inspired by the life philosophy, an ingenious gate (membership) function, which can mimic the open and close of the gate in the real world, is proposed to realize feature selection (FS) for interval type-2 fuzzy neural network. Based on the widths of gate functions, a smoothing integrated learning strategy is designed, and in the regularized FS error function the gate widths corresponding to one feature are grouped as one Group Lasso (GL) regularization term. During the training procedure of feature selection, all the group terms with respect to bad features will be punished, but for the good features the corresponding group terms converge to different nonzero values. When feature selection is finished, using the selected features, the interpretable clustering algorithm based initial interval type-2 rule generation method is detailedly introduced firstly, then a simple and efficient memory-based gradient method is presented for the tuning of rule structure parameters. Lastly, employing the simulation results of four regression problems and four classification problems, the effectiveness on simultaneous feature selection and system identification of our proposed model, i.e., the smoothing Group Lasso based interval type-2 fuzzy neural network (SGLIT2FNN), is proved, which illustrates that SGLIT2FNN not only simplifies the model structure by deleting the bad features, but also maintains the performance." @default.
- W4387046304 created "2023-09-27" @default.
- W4387046304 creator A5013038112 @default.
- W4387046304 creator A5026874866 @default.
- W4387046304 creator A5047357046 @default.
- W4387046304 creator A5047508093 @default.
- W4387046304 creator A5067821552 @default.
- W4387046304 creator A5075430732 @default.
- W4387046304 creator A5077866442 @default.
- W4387046304 creator A5078037196 @default.
- W4387046304 date "2023-11-01" @default.
- W4387046304 modified "2023-10-09" @default.
- W4387046304 title "A smoothing Group Lasso based interval type-2 fuzzy neural network for simultaneous feature selection and system identification" @default.
- W4387046304 cites W1927170233 @default.
- W4387046304 cites W1992176519 @default.
- W4387046304 cites W2000066643 @default.
- W4387046304 cites W2011174648 @default.
- W4387046304 cites W2032100896 @default.
- W4387046304 cites W2072506331 @default.
- W4387046304 cites W2092144116 @default.
- W4387046304 cites W2103232511 @default.
- W4387046304 cites W2103535990 @default.
- W4387046304 cites W2114883321 @default.
- W4387046304 cites W2135849563 @default.
- W4387046304 cites W2143935103 @default.
- W4387046304 cites W2156948680 @default.
- W4387046304 cites W2159265133 @default.
- W4387046304 cites W2165729498 @default.
- W4387046304 cites W2169814901 @default.
- W4387046304 cites W2316060816 @default.
- W4387046304 cites W2460144244 @default.
- W4387046304 cites W2598843318 @default.
- W4387046304 cites W2745461940 @default.
- W4387046304 cites W2806149340 @default.
- W4387046304 cites W2811153427 @default.
- W4387046304 cites W2883631898 @default.
- W4387046304 cites W2904958088 @default.
- W4387046304 cites W2909862814 @default.
- W4387046304 cites W2952587893 @default.
- W4387046304 cites W2963693295 @default.
- W4387046304 cites W2990761096 @default.
- W4387046304 cites W3013678647 @default.
- W4387046304 cites W3023050749 @default.
- W4387046304 cites W3024182761 @default.
- W4387046304 cites W3118283170 @default.
- W4387046304 cites W3134990095 @default.
- W4387046304 cites W3145877409 @default.
- W4387046304 cites W4283465670 @default.
- W4387046304 cites W4312547100 @default.
- W4387046304 doi "https://doi.org/10.1016/j.knosys.2023.111028" @default.
- W4387046304 hasPublicationYear "2023" @default.
- W4387046304 type Work @default.
- W4387046304 citedByCount "0" @default.
- W4387046304 crossrefType "journal-article" @default.
- W4387046304 hasAuthorship W4387046304A5013038112 @default.
- W4387046304 hasAuthorship W4387046304A5026874866 @default.
- W4387046304 hasAuthorship W4387046304A5047357046 @default.
- W4387046304 hasAuthorship W4387046304A5047508093 @default.
- W4387046304 hasAuthorship W4387046304A5067821552 @default.
- W4387046304 hasAuthorship W4387046304A5075430732 @default.
- W4387046304 hasAuthorship W4387046304A5077866442 @default.
- W4387046304 hasAuthorship W4387046304A5078037196 @default.
- W4387046304 hasConcept C11413529 @default.
- W4387046304 hasConcept C114614502 @default.
- W4387046304 hasConcept C138885662 @default.
- W4387046304 hasConcept C148483581 @default.
- W4387046304 hasConcept C153180895 @default.
- W4387046304 hasConcept C154945302 @default.
- W4387046304 hasConcept C2776135515 @default.
- W4387046304 hasConcept C2776401178 @default.
- W4387046304 hasConcept C2778067643 @default.
- W4387046304 hasConcept C31972630 @default.
- W4387046304 hasConcept C33923547 @default.
- W4387046304 hasConcept C3770464 @default.
- W4387046304 hasConcept C41008148 @default.
- W4387046304 hasConcept C41895202 @default.
- W4387046304 hasConcept C50644808 @default.
- W4387046304 hasConcept C58166 @default.
- W4387046304 hasConcept C73555534 @default.
- W4387046304 hasConceptScore W4387046304C11413529 @default.
- W4387046304 hasConceptScore W4387046304C114614502 @default.
- W4387046304 hasConceptScore W4387046304C138885662 @default.
- W4387046304 hasConceptScore W4387046304C148483581 @default.
- W4387046304 hasConceptScore W4387046304C153180895 @default.
- W4387046304 hasConceptScore W4387046304C154945302 @default.
- W4387046304 hasConceptScore W4387046304C2776135515 @default.
- W4387046304 hasConceptScore W4387046304C2776401178 @default.
- W4387046304 hasConceptScore W4387046304C2778067643 @default.
- W4387046304 hasConceptScore W4387046304C31972630 @default.
- W4387046304 hasConceptScore W4387046304C33923547 @default.
- W4387046304 hasConceptScore W4387046304C3770464 @default.
- W4387046304 hasConceptScore W4387046304C41008148 @default.
- W4387046304 hasConceptScore W4387046304C41895202 @default.
- W4387046304 hasConceptScore W4387046304C50644808 @default.
- W4387046304 hasConceptScore W4387046304C58166 @default.
- W4387046304 hasConceptScore W4387046304C73555534 @default.
- W4387046304 hasFunder F4320321001 @default.
- W4387046304 hasLocation W43870463041 @default.