Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387047777> ?p ?o ?g. }
- W4387047777 endingPage "1172" @default.
- W4387047777 startingPage "1160" @default.
- W4387047777 abstract "Patients with chronic kidney disease (CKD) necessitate specialized renal diets to prevent complications such as hyperkalemia and hyperphosphatemia. A comprehensive assessment of food components is pivotal, yet burdensome for healthcare providers. With evolving artificial intelligence (AI) technology, models such as ChatGPT, Bard AI, and Bing Chat can be instrumental in educating patients and assisting professionals. To gauge the efficacy of different AI models in discerning potassium and phosphorus content in foods, four AI models—ChatGPT 3.5, ChatGPT 4, Bard AI, and Bing Chat—were evaluated. A total of 240 food items, curated from the Mayo Clinic Renal Diet Handbook for CKD patients, were input into each model. These items were characterized by their potassium (149 items) and phosphorus (91 items) content. Each model was tasked to categorize the items into high or low potassium and high phosphorus content. The results were juxtaposed with the Mayo Clinic Renal Diet Handbook’s recommendations. The concordance between repeated sessions was also evaluated to assess model consistency. Among the models tested, ChatGPT 4 displayed superior performance in identifying potassium content, correctly classifying 81% of the foods. It accurately discerned 60% of low potassium and 99% of high potassium foods. In comparison, ChatGPT 3.5 exhibited a 66% accuracy rate. Bard AI and Bing Chat models had an accuracy rate of 79% and 81%, respectively. Regarding phosphorus content, Bard AI stood out with a flawless 100% accuracy rate. ChatGPT 3.5 and Bing Chat recognized 85% and 89% of the high phosphorus foods correctly, while ChatGPT 4 registered a 77% accuracy rate. Emerging AI models manifest a diverse range of accuracy in discerning potassium and phosphorus content in foods suitable for CKD patients. ChatGPT 4, in particular, showed a marked improvement over its predecessor, especially in detecting potassium content. The Bard AI model exhibited exceptional precision for phosphorus identification. This study underscores the potential of AI models as efficient tools in renal dietary planning, though refinements are warranted for optimal utility." @default.
- W4387047777 created "2023-09-27" @default.
- W4387047777 creator A5003808101 @default.
- W4387047777 creator A5019485654 @default.
- W4387047777 creator A5021615185 @default.
- W4387047777 creator A5023601368 @default.
- W4387047777 creator A5030293459 @default.
- W4387047777 creator A5041840662 @default.
- W4387047777 creator A5046932848 @default.
- W4387047777 creator A5047712678 @default.
- W4387047777 creator A5053087229 @default.
- W4387047777 creator A5087551298 @default.
- W4387047777 date "2023-09-26" @default.
- W4387047777 modified "2023-10-07" @default.
- W4387047777 title "AI-Powered Renal Diet Support: Performance of ChatGPT, Bard AI, and Bing Chat" @default.
- W4387047777 cites W2007937881 @default.
- W4387047777 cites W2586182593 @default.
- W4387047777 cites W2734427374 @default.
- W4387047777 cites W2804629684 @default.
- W4387047777 cites W2887890259 @default.
- W4387047777 cites W2897404974 @default.
- W4387047777 cites W2901625352 @default.
- W4387047777 cites W2906295032 @default.
- W4387047777 cites W2953532875 @default.
- W4387047777 cites W2972390796 @default.
- W4387047777 cites W2979523141 @default.
- W4387047777 cites W2990040944 @default.
- W4387047777 cites W3015835103 @default.
- W4387047777 cites W3034688782 @default.
- W4387047777 cites W3038004684 @default.
- W4387047777 cites W3049028910 @default.
- W4387047777 cites W3080822864 @default.
- W4387047777 cites W3082773822 @default.
- W4387047777 cites W3085741799 @default.
- W4387047777 cites W3087724658 @default.
- W4387047777 cites W3179310845 @default.
- W4387047777 cites W3186209406 @default.
- W4387047777 cites W3196012986 @default.
- W4387047777 cites W3197755468 @default.
- W4387047777 cites W3200896515 @default.
- W4387047777 cites W3201841192 @default.
- W4387047777 cites W3202502518 @default.
- W4387047777 cites W4205201623 @default.
- W4387047777 cites W4220734654 @default.
- W4387047777 cites W4221091958 @default.
- W4387047777 cites W4238030285 @default.
- W4387047777 cites W4248498903 @default.
- W4387047777 cites W4311500443 @default.
- W4387047777 cites W4313414641 @default.
- W4387047777 cites W4362606292 @default.
- W4387047777 cites W4378472917 @default.
- W4387047777 cites W4380087212 @default.
- W4387047777 cites W4384497585 @default.
- W4387047777 cites W4386224103 @default.
- W4387047777 cites W4386542010 @default.
- W4387047777 cites W4386687644 @default.
- W4387047777 doi "https://doi.org/10.3390/clinpract13050104" @default.
- W4387047777 hasPublicationYear "2023" @default.
- W4387047777 type Work @default.
- W4387047777 citedByCount "1" @default.
- W4387047777 crossrefType "journal-article" @default.
- W4387047777 hasAuthorship W4387047777A5003808101 @default.
- W4387047777 hasAuthorship W4387047777A5019485654 @default.
- W4387047777 hasAuthorship W4387047777A5021615185 @default.
- W4387047777 hasAuthorship W4387047777A5023601368 @default.
- W4387047777 hasAuthorship W4387047777A5030293459 @default.
- W4387047777 hasAuthorship W4387047777A5041840662 @default.
- W4387047777 hasAuthorship W4387047777A5046932848 @default.
- W4387047777 hasAuthorship W4387047777A5047712678 @default.
- W4387047777 hasAuthorship W4387047777A5053087229 @default.
- W4387047777 hasAuthorship W4387047777A5087551298 @default.
- W4387047777 hasBestOaLocation W43870477771 @default.
- W4387047777 hasConcept C126322002 @default.
- W4387047777 hasConcept C178790620 @default.
- W4387047777 hasConcept C185592680 @default.
- W4387047777 hasConcept C191897082 @default.
- W4387047777 hasConcept C192562407 @default.
- W4387047777 hasConcept C2780243291 @default.
- W4387047777 hasConcept C510538283 @default.
- W4387047777 hasConcept C517785266 @default.
- W4387047777 hasConcept C71924100 @default.
- W4387047777 hasConceptScore W4387047777C126322002 @default.
- W4387047777 hasConceptScore W4387047777C178790620 @default.
- W4387047777 hasConceptScore W4387047777C185592680 @default.
- W4387047777 hasConceptScore W4387047777C191897082 @default.
- W4387047777 hasConceptScore W4387047777C192562407 @default.
- W4387047777 hasConceptScore W4387047777C2780243291 @default.
- W4387047777 hasConceptScore W4387047777C510538283 @default.
- W4387047777 hasConceptScore W4387047777C517785266 @default.
- W4387047777 hasConceptScore W4387047777C71924100 @default.
- W4387047777 hasIssue "5" @default.
- W4387047777 hasLocation W43870477771 @default.
- W4387047777 hasOpenAccess W4387047777 @default.
- W4387047777 hasPrimaryLocation W43870477771 @default.
- W4387047777 hasRelatedWork W133937744 @default.
- W4387047777 hasRelatedWork W2013215766 @default.
- W4387047777 hasRelatedWork W2049058840 @default.
- W4387047777 hasRelatedWork W2063784476 @default.