Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387048596> ?p ?o ?g. }
- W4387048596 endingPage "11" @default.
- W4387048596 startingPage "1" @default.
- W4387048596 abstract "ABSTRACTOffshore wind turbines (OWTs) have complex operating conditions and are prone to accidents. Timely and accurate vibration prediction can reduce the probability of failure of OWTs. To address this issue, this study proposed a vibration prediction model based on long short-term memory (LSTM) network. The proposed prediction model was applied to an OWT in an offshore wind farm in China, and three evaluation indicators, i.e. mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE), were used to verify the vibration prediction performance of LSTM. The results demonstrated that the prediction accuracy of LSTM was better than that of back propagation (BP) neural network, and LSTM had optimum engineering practicability. The prediction accuracy of LSTM and BP neural networks decreased with an increase in prediction durations. However, the prediction accuracy of LSTM was higher. This study improves the online safety monitoring of OWTs.KEYWORDS: Offshore wind turbinevibration predictionlong short-term memory networksafety monitoringsuction bucket foundation Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the Foundation for Innovative Research Groups of the Natural Science Foundation of Hebei Province: [grant number E2020402074]; Southern Offshore Wind Power Joint Development Co., Ltd.: [grant number FDGC20200301GR02]; Tianjin Natural Science Foundation: [grant number 20JCQNJC01540]; the Science Fund for Creative Research Groups of the National Natural Science Foundation of China: [grant number 51621092]; the Program of Introducing Talents of Discipline to Universities: [grant number B14012]." @default.
- W4387048596 created "2023-09-27" @default.
- W4387048596 creator A5024730337 @default.
- W4387048596 creator A5026442388 @default.
- W4387048596 creator A5048682136 @default.
- W4387048596 creator A5084478032 @default.
- W4387048596 date "2023-09-26" @default.
- W4387048596 modified "2023-09-27" @default.
- W4387048596 title "Vibration prediction of offshore wind turbines based on long short-term memory network" @default.
- W4387048596 cites W1124852154 @default.
- W4387048596 cites W1965346320 @default.
- W4387048596 cites W1977692645 @default.
- W4387048596 cites W2008970274 @default.
- W4387048596 cites W2012244497 @default.
- W4387048596 cites W2064675550 @default.
- W4387048596 cites W2110485445 @default.
- W4387048596 cites W2410800439 @default.
- W4387048596 cites W2603330283 @default.
- W4387048596 cites W2756352034 @default.
- W4387048596 cites W2782193190 @default.
- W4387048596 cites W2884415573 @default.
- W4387048596 cites W2896920734 @default.
- W4387048596 cites W2897625161 @default.
- W4387048596 cites W2905334667 @default.
- W4387048596 cites W2964139168 @default.
- W4387048596 cites W2969965974 @default.
- W4387048596 cites W2976427900 @default.
- W4387048596 cites W3018589140 @default.
- W4387048596 cites W3024569339 @default.
- W4387048596 cites W3027002511 @default.
- W4387048596 cites W3092588609 @default.
- W4387048596 cites W3112980029 @default.
- W4387048596 cites W3158509962 @default.
- W4387048596 cites W3174872176 @default.
- W4387048596 cites W3176041833 @default.
- W4387048596 cites W3187462170 @default.
- W4387048596 cites W3200304500 @default.
- W4387048596 cites W4200202183 @default.
- W4387048596 cites W4200351803 @default.
- W4387048596 cites W4206932825 @default.
- W4387048596 cites W4206936079 @default.
- W4387048596 cites W4206943226 @default.
- W4387048596 cites W4210965229 @default.
- W4387048596 cites W4213304230 @default.
- W4387048596 cites W4220834663 @default.
- W4387048596 cites W4220954082 @default.
- W4387048596 cites W4223924007 @default.
- W4387048596 cites W4225985093 @default.
- W4387048596 cites W4226411978 @default.
- W4387048596 cites W4229042584 @default.
- W4387048596 cites W4282938741 @default.
- W4387048596 cites W4283367183 @default.
- W4387048596 cites W4283759498 @default.
- W4387048596 cites W4288050066 @default.
- W4387048596 cites W4288901802 @default.
- W4387048596 cites W4293243412 @default.
- W4387048596 doi "https://doi.org/10.1080/17445302.2023.2260941" @default.
- W4387048596 hasPublicationYear "2023" @default.
- W4387048596 type Work @default.
- W4387048596 citedByCount "0" @default.
- W4387048596 crossrefType "journal-article" @default.
- W4387048596 hasAuthorship W4387048596A5024730337 @default.
- W4387048596 hasAuthorship W4387048596A5026442388 @default.
- W4387048596 hasAuthorship W4387048596A5048682136 @default.
- W4387048596 hasAuthorship W4387048596A5084478032 @default.
- W4387048596 hasConcept C105795698 @default.
- W4387048596 hasConcept C119599485 @default.
- W4387048596 hasConcept C121332964 @default.
- W4387048596 hasConcept C127413603 @default.
- W4387048596 hasConcept C139945424 @default.
- W4387048596 hasConcept C150217764 @default.
- W4387048596 hasConcept C153294291 @default.
- W4387048596 hasConcept C154945302 @default.
- W4387048596 hasConcept C161067210 @default.
- W4387048596 hasConcept C166957645 @default.
- W4387048596 hasConcept C198394728 @default.
- W4387048596 hasConcept C199104240 @default.
- W4387048596 hasConcept C2780966255 @default.
- W4387048596 hasConcept C33923547 @default.
- W4387048596 hasConcept C41008148 @default.
- W4387048596 hasConcept C50644808 @default.
- W4387048596 hasConcept C61797465 @default.
- W4387048596 hasConcept C62520636 @default.
- W4387048596 hasConcept C78600449 @default.
- W4387048596 hasConcept C8735168 @default.
- W4387048596 hasConcept C95457728 @default.
- W4387048596 hasConceptScore W4387048596C105795698 @default.
- W4387048596 hasConceptScore W4387048596C119599485 @default.
- W4387048596 hasConceptScore W4387048596C121332964 @default.
- W4387048596 hasConceptScore W4387048596C127413603 @default.
- W4387048596 hasConceptScore W4387048596C139945424 @default.
- W4387048596 hasConceptScore W4387048596C150217764 @default.
- W4387048596 hasConceptScore W4387048596C153294291 @default.
- W4387048596 hasConceptScore W4387048596C154945302 @default.
- W4387048596 hasConceptScore W4387048596C161067210 @default.
- W4387048596 hasConceptScore W4387048596C166957645 @default.
- W4387048596 hasConceptScore W4387048596C198394728 @default.
- W4387048596 hasConceptScore W4387048596C199104240 @default.