Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387048619> ?p ?o ?g. }
- W4387048619 endingPage "24" @default.
- W4387048619 startingPage "1" @default.
- W4387048619 abstract "AbstractRapid land-use change detection (LUCD) is pivotal for refined urban planning and management. In this paper, we investigate LUCD through learning embeddings of points of interest (POIs) from multiple temporalities. There are several prominent challenges: (1) the co-occurrence problem of multi-temporal POIs, (2) the heterogeneity of POI categorization, and (3) The lack of human-crafted labels. Therefore, multi-temporal POIs need to be aligned in the embedding space for effective LUCD. This study proposes a multi-temporal POI embedding (MT-POI2Vec) technique for LUCD in a fully unsupervised manner. In MT-POI2Vec, we first utilize random walks in POI networks to capture their single-period co-occurrence patterns; then, we leverage manifold learning to capture (1) single-period categorical semantics of POIs to enforce semantically similar POI embedding to be close and (2) cross-period categorical semantics to align multi-temporal POI embedding in a unified embedding space. We conducted experiments in Shenzhen, China, which demonstrates that the proposed method is effective. Compared with several baseline models, MT-POI2Vec can better align multi-temporal POIs and thus achieve higher performance in LUCD. In addition, our model can effectively identify areas with unchanged land use and land use changes in residential and industrial areas at a fine scale.Keywords: Land-use changeembedding space alignmentpoints of interestPOI embedding AcknowledgementsWe would like to acknowledge the comments and insights from the editors and three anonymous reviewers that helped lift the quality of the article.Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementWe share the codes and the sub-sampled data of the study at https://doi.org/10.6084/m9.figshare.24081699.Additional informationFundingThis work was supported by the National Key Research and Development Program of China [2019YFB2102903], the National Natural Science Foundation of China [41801306, 42101421 and 42171466]; the “CUG Scholar” Scientific Research Funds at China University of Geosciences (Wuhan) [2022034], a grant from Alibaba Innovative Research Project [20228670], a Guangdong-Hong Kong-Macau Joint Laboratory Program [2020B1212030009], and a grant from State Key Laboratory of Resources and Environmental Information System. W.H. acknowledges the financial support from the Knut and Alice Wallenberg Foundation.Notes on contributorsYao YaoYao Yao is a professor at China University of Geosciences (Wuhan), a researcher from the Center for Spatial Information Science at the University of Tokyo, and a visiting scholar at Alibaba Group. His research interests are geospatial big data mining, analysis, and computational urban science.Qia ZhuQia Zhu is a graduate student at China University of Geosciences (Wuhan). His research interests are spatial representation learning and urban land use change detection.Zijin GuoZijin Guo is a graduate student at China University of Geosciences (Wuhan). His research interests are trajectory data mining and complex network analysis.Weiming HuangWeiming Huang received his PhD in Geographical Information Science at Lund University, Sweden in 2020. He is a Wallenberg-NTU Postdoctoral Fellow at Nanyang Technological University, Singapore. His research interests mainly include spatial data mining and geospatial knowledge graphs.Yatao ZhangYatao Zhang is a doctoral student at the Mobility Information Engineering lab at ETH Zurich and the Future Resilient Systems at the Singapore-ETH centre. His research interests lie in context-based spatiotemporal analysis, geospatial big data mining, and traffic forecasting.Xiaoqin YanXiaoqin Yan is currently a Ph.D. student in GIScience at the Institute of Remote Sensing and Geographical Information Systems, Peking University, Beijing. His research interests are spatiotemporal big data computing and social perception.Anning DongAnning Dong is a graduate student at China University of Geosciences (Wuhan). His research interests are spatiotemporal big data mining and crime geography.Zhangwei JiangZhangwei Jiang is a staff algorithm engineer at Alibaba Group. His research interests are LBS data mining and research&recommendation algorithm.Hong LiuHong Liu is a senior staff algorithm engineer at Alibaba Group. His research interests are data mining and research&recommendation algorithm.Qingfeng GuanQingfeng Guan is a professor at China University of Geosciences (Wuhan). His research interests are high-performance spatial intelligence computation and urban computing." @default.
- W4387048619 created "2023-09-27" @default.
- W4387048619 creator A5013966930 @default.
- W4387048619 creator A5027930243 @default.
- W4387048619 creator A5045428789 @default.
- W4387048619 creator A5054950510 @default.
- W4387048619 creator A5057287134 @default.
- W4387048619 creator A5057631007 @default.
- W4387048619 creator A5063647157 @default.
- W4387048619 creator A5064810941 @default.
- W4387048619 creator A5069265900 @default.
- W4387048619 creator A5079216906 @default.
- W4387048619 date "2023-09-26" @default.
- W4387048619 modified "2023-10-09" @default.
- W4387048619 title "Unsupervised land-use change detection using multi-temporal POI embedding" @default.
- W4387048619 cites W1821388881 @default.
- W4387048619 cites W1972631516 @default.
- W4387048619 cites W2025397867 @default.
- W4387048619 cites W2030257787 @default.
- W4387048619 cites W2038789324 @default.
- W4387048619 cites W2202958134 @default.
- W4387048619 cites W2250376704 @default.
- W4387048619 cites W2274749644 @default.
- W4387048619 cites W2330485005 @default.
- W4387048619 cites W2470630945 @default.
- W4387048619 cites W2534538876 @default.
- W4387048619 cites W2569826544 @default.
- W4387048619 cites W2619873458 @default.
- W4387048619 cites W2763438440 @default.
- W4387048619 cites W2776890924 @default.
- W4387048619 cites W2810574214 @default.
- W4387048619 cites W2810974278 @default.
- W4387048619 cites W2904703694 @default.
- W4387048619 cites W2909368106 @default.
- W4387048619 cites W2914608334 @default.
- W4387048619 cites W2920964209 @default.
- W4387048619 cites W2921442714 @default.
- W4387048619 cites W2956786564 @default.
- W4387048619 cites W2964579991 @default.
- W4387048619 cites W2986105061 @default.
- W4387048619 cites W3006361663 @default.
- W4387048619 cites W3011147769 @default.
- W4387048619 cites W3016960748 @default.
- W4387048619 cites W3030551918 @default.
- W4387048619 cites W3036266756 @default.
- W4387048619 cites W3091752018 @default.
- W4387048619 cites W3133844141 @default.
- W4387048619 cites W3136416638 @default.
- W4387048619 cites W3187883086 @default.
- W4387048619 cites W3217442030 @default.
- W4387048619 cites W4200000656 @default.
- W4387048619 cites W4221005846 @default.
- W4387048619 cites W4313706055 @default.
- W4387048619 cites W4379046772 @default.
- W4387048619 doi "https://doi.org/10.1080/13658816.2023.2257262" @default.
- W4387048619 hasPublicationYear "2023" @default.
- W4387048619 type Work @default.
- W4387048619 citedByCount "0" @default.
- W4387048619 crossrefType "journal-article" @default.
- W4387048619 hasAuthorship W4387048619A5013966930 @default.
- W4387048619 hasAuthorship W4387048619A5027930243 @default.
- W4387048619 hasAuthorship W4387048619A5045428789 @default.
- W4387048619 hasAuthorship W4387048619A5054950510 @default.
- W4387048619 hasAuthorship W4387048619A5057287134 @default.
- W4387048619 hasAuthorship W4387048619A5057631007 @default.
- W4387048619 hasAuthorship W4387048619A5063647157 @default.
- W4387048619 hasAuthorship W4387048619A5064810941 @default.
- W4387048619 hasAuthorship W4387048619A5069265900 @default.
- W4387048619 hasAuthorship W4387048619A5079216906 @default.
- W4387048619 hasConcept C119857082 @default.
- W4387048619 hasConcept C124101348 @default.
- W4387048619 hasConcept C153083717 @default.
- W4387048619 hasConcept C154945302 @default.
- W4387048619 hasConcept C205649164 @default.
- W4387048619 hasConcept C41008148 @default.
- W4387048619 hasConcept C41608201 @default.
- W4387048619 hasConcept C5274069 @default.
- W4387048619 hasConcept C94124525 @default.
- W4387048619 hasConceptScore W4387048619C119857082 @default.
- W4387048619 hasConceptScore W4387048619C124101348 @default.
- W4387048619 hasConceptScore W4387048619C153083717 @default.
- W4387048619 hasConceptScore W4387048619C154945302 @default.
- W4387048619 hasConceptScore W4387048619C205649164 @default.
- W4387048619 hasConceptScore W4387048619C41008148 @default.
- W4387048619 hasConceptScore W4387048619C41608201 @default.
- W4387048619 hasConceptScore W4387048619C5274069 @default.
- W4387048619 hasConceptScore W4387048619C94124525 @default.
- W4387048619 hasFunder F4320321001 @default.
- W4387048619 hasFunder F4320322327 @default.
- W4387048619 hasFunder F4320326832 @default.
- W4387048619 hasFunder F4320335777 @default.
- W4387048619 hasLocation W43870486191 @default.
- W4387048619 hasOpenAccess W4387048619 @default.
- W4387048619 hasPrimaryLocation W43870486191 @default.
- W4387048619 hasRelatedWork W2171282425 @default.
- W4387048619 hasRelatedWork W235182932 @default.
- W4387048619 hasRelatedWork W2365213443 @default.
- W4387048619 hasRelatedWork W2487635448 @default.