Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387048897> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4387048897 endingPage "14" @default.
- W4387048897 startingPage "1" @default.
- W4387048897 abstract "Plant disease detection is an important aspect of modern agriculture that is crucial for ensuring crop productivity and quality. Sweet lime is an important citrus fruit, and its leaves are susceptible to a range of diseases that can significantly impact its yield. However, the lack of publicly available data on sweet lime diseases has made the development of effective detection systems challenging. To address this problem, the authors of this paper developed their own dataset of sweet lime leaves containing 4000 images. The dataset was carefully curated to ensure diversity and accuracy, and it was used to train a fine-tuned customised single-shot detector (SSD) model. The SSD is a popular object detection algorithm that is known for its speed and accuracy, making it well-suited for this task. The results of the evaluation showed that the proposed approach achieved impressive performance metrics. The model had an accuracy of 99%, which indicates that it was able to correctly identify the presence or absence of diseases in the sweet lime leaves with high confidence. The mean intersection over union (mIoU) of 97% is a measure of how well the model was able to detect the boundaries of the diseased areas, indicating that it was able to accurately localize the diseases. The model’s inference time of 16ms and frames per second (FPS) of 60 demonstrate that it is fast enough to be used in real-time applications. Finally, the mean average precision (mAP) of 0.97 is a measure of how well the model was able to rank the detected diseases by their severity, demonstrating its effectiveness in prioritizing diseases for further action. These findings have important practical implications for agricultural management. The proposed approach could be used to monitor sweet lime orchards for diseases and to identify the specific types of diseases present. This information could be used to make targeted interventions, such as applying fungicides or removing infected leaves, to prevent the spread of diseases and ensure the health and productivity of the crop. Furthermore, the methodology used in this study could be adapted for use with other crops and diseases, expanding its potential impact in the field of agriculture." @default.
- W4387048897 created "2023-09-27" @default.
- W4387048897 creator A5038260597 @default.
- W4387048897 creator A5053951395 @default.
- W4387048897 creator A5061888863 @default.
- W4387048897 date "2023-01-01" @default.
- W4387048897 modified "2023-09-27" @default.
- W4387048897 title "Fine Tuned Single Shot Detector for Finding Disease Patches in Leaves" @default.
- W4387048897 cites W2602159426 @default.
- W4387048897 cites W2758893285 @default.
- W4387048897 cites W2929736875 @default.
- W4387048897 cites W2967464015 @default.
- W4387048897 cites W3036241636 @default.
- W4387048897 cites W3111432325 @default.
- W4387048897 cites W3131952131 @default.
- W4387048897 cites W3149839483 @default.
- W4387048897 cites W3159001133 @default.
- W4387048897 cites W3163885127 @default.
- W4387048897 cites W4224299147 @default.
- W4387048897 cites W4379364212 @default.
- W4387048897 cites W4386106452 @default.
- W4387048897 doi "https://doi.org/10.1007/978-3-031-43605-5_1" @default.
- W4387048897 hasPublicationYear "2023" @default.
- W4387048897 type Work @default.
- W4387048897 citedByCount "0" @default.
- W4387048897 crossrefType "book-chapter" @default.
- W4387048897 hasAuthorship W4387048897A5038260597 @default.
- W4387048897 hasAuthorship W4387048897A5053951395 @default.
- W4387048897 hasAuthorship W4387048897A5061888863 @default.
- W4387048897 hasConcept C124101348 @default.
- W4387048897 hasConcept C127413603 @default.
- W4387048897 hasConcept C146978453 @default.
- W4387048897 hasConcept C151730666 @default.
- W4387048897 hasConcept C153180895 @default.
- W4387048897 hasConcept C154945302 @default.
- W4387048897 hasConcept C201995342 @default.
- W4387048897 hasConcept C204323151 @default.
- W4387048897 hasConcept C205649164 @default.
- W4387048897 hasConcept C2776214188 @default.
- W4387048897 hasConcept C2778218555 @default.
- W4387048897 hasConcept C2780009758 @default.
- W4387048897 hasConcept C2780451532 @default.
- W4387048897 hasConcept C41008148 @default.
- W4387048897 hasConcept C58640448 @default.
- W4387048897 hasConcept C64543145 @default.
- W4387048897 hasConcept C76155785 @default.
- W4387048897 hasConcept C86803240 @default.
- W4387048897 hasConcept C94915269 @default.
- W4387048897 hasConceptScore W4387048897C124101348 @default.
- W4387048897 hasConceptScore W4387048897C127413603 @default.
- W4387048897 hasConceptScore W4387048897C146978453 @default.
- W4387048897 hasConceptScore W4387048897C151730666 @default.
- W4387048897 hasConceptScore W4387048897C153180895 @default.
- W4387048897 hasConceptScore W4387048897C154945302 @default.
- W4387048897 hasConceptScore W4387048897C201995342 @default.
- W4387048897 hasConceptScore W4387048897C204323151 @default.
- W4387048897 hasConceptScore W4387048897C205649164 @default.
- W4387048897 hasConceptScore W4387048897C2776214188 @default.
- W4387048897 hasConceptScore W4387048897C2778218555 @default.
- W4387048897 hasConceptScore W4387048897C2780009758 @default.
- W4387048897 hasConceptScore W4387048897C2780451532 @default.
- W4387048897 hasConceptScore W4387048897C41008148 @default.
- W4387048897 hasConceptScore W4387048897C58640448 @default.
- W4387048897 hasConceptScore W4387048897C64543145 @default.
- W4387048897 hasConceptScore W4387048897C76155785 @default.
- W4387048897 hasConceptScore W4387048897C86803240 @default.
- W4387048897 hasConceptScore W4387048897C94915269 @default.
- W4387048897 hasLocation W43870488971 @default.
- W4387048897 hasOpenAccess W4387048897 @default.
- W4387048897 hasPrimaryLocation W43870488971 @default.
- W4387048897 hasRelatedWork W1535046720 @default.
- W4387048897 hasRelatedWork W2010651798 @default.
- W4387048897 hasRelatedWork W2033914206 @default.
- W4387048897 hasRelatedWork W2081647779 @default.
- W4387048897 hasRelatedWork W2084980147 @default.
- W4387048897 hasRelatedWork W2146076056 @default.
- W4387048897 hasRelatedWork W2365576285 @default.
- W4387048897 hasRelatedWork W2581149828 @default.
- W4387048897 hasRelatedWork W613192064 @default.
- W4387048897 hasRelatedWork W648068367 @default.
- W4387048897 isParatext "false" @default.
- W4387048897 isRetracted "false" @default.
- W4387048897 workType "book-chapter" @default.