Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387049149> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4387049149 endingPage "012019" @default.
- W4387049149 startingPage "012019" @default.
- W4387049149 abstract "Abstract As the number of solar photovoltaic (PV) panels increases, dust detection on the panels becomes particularly important. In this paper, we propose a deep learning-based method that detects dust from solar PV panels through Unmanned Aerial Vehicles. The model utilizes the improved YOLOv5 method to detect PV panel dust on aerial images. The model is a lightweight model that requires fewer computing resources and time and can work in real time on a regular CPU computer. Moreover, in this paper, a prediction head is added to YOLOv5 to cope with significant changes in target scales due to unmanned aerial vehicles capturing images at different altitudes. And the model introduces new tricks to help detect dust targets in images with large coverage areas. After experimental validation, the proposed method outperforms the state-of-the-art in terms of detection accuracy, detection speed, F1 score, etc., and is more suitable for the inspection of dust on PV panels of Unmanned Aerial Vehicles." @default.
- W4387049149 created "2023-09-27" @default.
- W4387049149 creator A5009042747 @default.
- W4387049149 creator A5058353424 @default.
- W4387049149 date "2023-09-01" @default.
- W4387049149 modified "2023-09-27" @default.
- W4387049149 title "A deep learning-based method detects dust from solar PV panels through Unmanned Aerial Vehicles" @default.
- W4387049149 cites W2157597705 @default.
- W4387049149 cites W2806915479 @default.
- W4387049149 cites W2922415109 @default.
- W4387049149 cites W3165505571 @default.
- W4387049149 cites W3203727370 @default.
- W4387049149 cites W3216275135 @default.
- W4387049149 cites W4207024474 @default.
- W4387049149 cites W4225523356 @default.
- W4387049149 doi "https://doi.org/10.1088/1742-6596/2584/1/012019" @default.
- W4387049149 hasPublicationYear "2023" @default.
- W4387049149 type Work @default.
- W4387049149 citedByCount "0" @default.
- W4387049149 crossrefType "journal-article" @default.
- W4387049149 hasAuthorship W4387049149A5009042747 @default.
- W4387049149 hasAuthorship W4387049149A5058353424 @default.
- W4387049149 hasBestOaLocation W43870491491 @default.
- W4387049149 hasConcept C108583219 @default.
- W4387049149 hasConcept C115961682 @default.
- W4387049149 hasConcept C119599485 @default.
- W4387049149 hasConcept C127313418 @default.
- W4387049149 hasConcept C127413603 @default.
- W4387049149 hasConcept C153180895 @default.
- W4387049149 hasConcept C154945302 @default.
- W4387049149 hasConcept C171146098 @default.
- W4387049149 hasConcept C2776151529 @default.
- W4387049149 hasConcept C2776429412 @default.
- W4387049149 hasConcept C31972630 @default.
- W4387049149 hasConcept C39432304 @default.
- W4387049149 hasConcept C41008148 @default.
- W4387049149 hasConcept C41291067 @default.
- W4387049149 hasConcept C44154836 @default.
- W4387049149 hasConcept C54355233 @default.
- W4387049149 hasConcept C59519942 @default.
- W4387049149 hasConcept C62649853 @default.
- W4387049149 hasConcept C79403827 @default.
- W4387049149 hasConcept C86803240 @default.
- W4387049149 hasConceptScore W4387049149C108583219 @default.
- W4387049149 hasConceptScore W4387049149C115961682 @default.
- W4387049149 hasConceptScore W4387049149C119599485 @default.
- W4387049149 hasConceptScore W4387049149C127313418 @default.
- W4387049149 hasConceptScore W4387049149C127413603 @default.
- W4387049149 hasConceptScore W4387049149C153180895 @default.
- W4387049149 hasConceptScore W4387049149C154945302 @default.
- W4387049149 hasConceptScore W4387049149C171146098 @default.
- W4387049149 hasConceptScore W4387049149C2776151529 @default.
- W4387049149 hasConceptScore W4387049149C2776429412 @default.
- W4387049149 hasConceptScore W4387049149C31972630 @default.
- W4387049149 hasConceptScore W4387049149C39432304 @default.
- W4387049149 hasConceptScore W4387049149C41008148 @default.
- W4387049149 hasConceptScore W4387049149C41291067 @default.
- W4387049149 hasConceptScore W4387049149C44154836 @default.
- W4387049149 hasConceptScore W4387049149C54355233 @default.
- W4387049149 hasConceptScore W4387049149C59519942 @default.
- W4387049149 hasConceptScore W4387049149C62649853 @default.
- W4387049149 hasConceptScore W4387049149C79403827 @default.
- W4387049149 hasConceptScore W4387049149C86803240 @default.
- W4387049149 hasIssue "1" @default.
- W4387049149 hasLocation W43870491491 @default.
- W4387049149 hasOpenAccess W4387049149 @default.
- W4387049149 hasPrimaryLocation W43870491491 @default.
- W4387049149 hasRelatedWork W2883677709 @default.
- W4387049149 hasRelatedWork W2922421953 @default.
- W4387049149 hasRelatedWork W2970686063 @default.
- W4387049149 hasRelatedWork W3002270006 @default.
- W4387049149 hasRelatedWork W3101676691 @default.
- W4387049149 hasRelatedWork W3112953119 @default.
- W4387049149 hasRelatedWork W3162220967 @default.
- W4387049149 hasRelatedWork W3197607112 @default.
- W4387049149 hasRelatedWork W4220882927 @default.
- W4387049149 hasRelatedWork W4320731732 @default.
- W4387049149 hasVolume "2584" @default.
- W4387049149 isParatext "false" @default.
- W4387049149 isRetracted "false" @default.
- W4387049149 workType "article" @default.