Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387052783> ?p ?o ?g. }
- W4387052783 abstract "Studies have shown that colorectal cancer prognosis can be predicted by deep learning-based analysis of histological tissue sections of the primary tumor. So far, this has been achieved using a binary prediction. Survival curves might contain more detailed information and thus enable a more fine-grained risk prediction. Therefore, we established survival curve-based CRC survival predictors and benchmarked them against standard binary survival predictors, comparing their performance extensively on the clinical high and low risk subsets of one internal and three external cohorts. Survival curve-based risk prediction achieved a very similar risk stratification to binary risk prediction for this task. Exchanging other components of the pipeline, namely input tissue and feature extractor, had largely identical effects on model performance independently of the type of risk prediction. An ensemble of all survival curve-based models exhibited a more robust performance, as did a similar ensemble based on binary risk prediction. Patients could be further stratified within clinical risk groups. However, performance still varied across cohorts, indicating limited generalization of all investigated image analysis pipelines, whereas models using clinical data performed robustly on all cohorts." @default.
- W4387052783 created "2023-09-27" @default.
- W4387052783 creator A5001177562 @default.
- W4387052783 creator A5010368340 @default.
- W4387052783 creator A5023396800 @default.
- W4387052783 creator A5032058761 @default.
- W4387052783 creator A5036777611 @default.
- W4387052783 creator A5050060159 @default.
- W4387052783 creator A5050943602 @default.
- W4387052783 creator A5058641804 @default.
- W4387052783 creator A5061332501 @default.
- W4387052783 creator A5069221894 @default.
- W4387052783 creator A5077206620 @default.
- W4387052783 creator A5082185339 @default.
- W4387052783 creator A5086466437 @default.
- W4387052783 creator A5086485718 @default.
- W4387052783 creator A5089674177 @default.
- W4387052783 creator A5089833911 @default.
- W4387052783 creator A5091513635 @default.
- W4387052783 date "2023-09-26" @default.
- W4387052783 modified "2023-10-04" @default.
- W4387052783 title "Colorectal cancer risk stratification on histological slides based on survival curves predicted by deep learning" @default.
- W4387052783 cites W1986546598 @default.
- W4387052783 cites W2000703258 @default.
- W4387052783 cites W2004864119 @default.
- W4387052783 cites W2067493741 @default.
- W4387052783 cites W2081916287 @default.
- W4387052783 cites W2083277862 @default.
- W4387052783 cites W2098026442 @default.
- W4387052783 cites W2129925362 @default.
- W4387052783 cites W2141486573 @default.
- W4387052783 cites W2262414037 @default.
- W4387052783 cites W2268912183 @default.
- W4387052783 cites W2476720530 @default.
- W4387052783 cites W2495886533 @default.
- W4387052783 cites W2772723798 @default.
- W4387052783 cites W2914568698 @default.
- W4387052783 cites W2965512201 @default.
- W4387052783 cites W3004053956 @default.
- W4387052783 cites W3043535018 @default.
- W4387052783 cites W3082066016 @default.
- W4387052783 cites W3087107838 @default.
- W4387052783 cites W3092124539 @default.
- W4387052783 cites W3099478002 @default.
- W4387052783 cites W3128554767 @default.
- W4387052783 cites W3128646645 @default.
- W4387052783 cites W3156579229 @default.
- W4387052783 cites W3159481202 @default.
- W4387052783 cites W3202929943 @default.
- W4387052783 cites W3211074487 @default.
- W4387052783 cites W3212104779 @default.
- W4387052783 cites W4225116060 @default.
- W4387052783 cites W4298395281 @default.
- W4387052783 cites W4312468136 @default.
- W4387052783 doi "https://doi.org/10.1038/s41698-023-00451-3" @default.
- W4387052783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37752266" @default.
- W4387052783 hasPublicationYear "2023" @default.
- W4387052783 type Work @default.
- W4387052783 citedByCount "0" @default.
- W4387052783 crossrefType "journal-article" @default.
- W4387052783 hasAuthorship W4387052783A5001177562 @default.
- W4387052783 hasAuthorship W4387052783A5010368340 @default.
- W4387052783 hasAuthorship W4387052783A5023396800 @default.
- W4387052783 hasAuthorship W4387052783A5032058761 @default.
- W4387052783 hasAuthorship W4387052783A5036777611 @default.
- W4387052783 hasAuthorship W4387052783A5050060159 @default.
- W4387052783 hasAuthorship W4387052783A5050943602 @default.
- W4387052783 hasAuthorship W4387052783A5058641804 @default.
- W4387052783 hasAuthorship W4387052783A5061332501 @default.
- W4387052783 hasAuthorship W4387052783A5069221894 @default.
- W4387052783 hasAuthorship W4387052783A5077206620 @default.
- W4387052783 hasAuthorship W4387052783A5082185339 @default.
- W4387052783 hasAuthorship W4387052783A5086466437 @default.
- W4387052783 hasAuthorship W4387052783A5086485718 @default.
- W4387052783 hasAuthorship W4387052783A5089674177 @default.
- W4387052783 hasAuthorship W4387052783A5089833911 @default.
- W4387052783 hasAuthorship W4387052783A5091513635 @default.
- W4387052783 hasBestOaLocation W43870527831 @default.
- W4387052783 hasConcept C10515644 @default.
- W4387052783 hasConcept C121608353 @default.
- W4387052783 hasConcept C12267149 @default.
- W4387052783 hasConcept C126322002 @default.
- W4387052783 hasConcept C134306372 @default.
- W4387052783 hasConcept C143998085 @default.
- W4387052783 hasConcept C154945302 @default.
- W4387052783 hasConcept C177148314 @default.
- W4387052783 hasConcept C199360897 @default.
- W4387052783 hasConcept C3020404979 @default.
- W4387052783 hasConcept C33923547 @default.
- W4387052783 hasConcept C41008148 @default.
- W4387052783 hasConcept C43521106 @default.
- W4387052783 hasConcept C48372109 @default.
- W4387052783 hasConcept C526805850 @default.
- W4387052783 hasConcept C66905080 @default.
- W4387052783 hasConcept C71924100 @default.
- W4387052783 hasConcept C94375191 @default.
- W4387052783 hasConceptScore W4387052783C10515644 @default.
- W4387052783 hasConceptScore W4387052783C121608353 @default.
- W4387052783 hasConceptScore W4387052783C12267149 @default.
- W4387052783 hasConceptScore W4387052783C126322002 @default.