Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387057051> ?p ?o ?g. }
- W4387057051 endingPage "456" @default.
- W4387057051 startingPage "456" @default.
- W4387057051 abstract "This study examines the potential of the soft computing technique, namely, multiple linear regression (MLR), genetic programming (GP), classification and regression trees (CART) and GA-ENN (genetic algorithm-emotional neuron network), to predict the ultimate bearing capacity (UBC) of cohesionless soils beneath shallow foundations. For the first time, two grey-box AI models, GP and CART, and one hybrid AI model, GA-ENN, were used in the literature to predict UBC. The inputs of the model are the width of footing (B), depth of footing (D), footing geometry (ratio of length to width, L/B), unit weight of sand (γd or γ′), and internal friction angle (ϕ). The results of the present model were compared with those obtained via two theoretical approaches and one AI approach reported in the literature. The statistical evaluation of results shows that the presently applied paradigm is better than the theoretical approaches and is competing well for the prediction of qu. This study shows that the developed AI models are a robust model for the qu prediction of shallow foundations on cohesionless soil. Sensitivity analysis was also carried out to determine the effect of each input parameter. The findings showed that the width and depth of the foundation and unit weight of soil (γd or γ′) played the most significant roles, while the internal friction angle and L/B showed less importance in predicting qu." @default.
- W4387057051 created "2023-09-27" @default.
- W4387057051 creator A5005223122 @default.
- W4387057051 creator A5032436237 @default.
- W4387057051 creator A5065402113 @default.
- W4387057051 creator A5072989208 @default.
- W4387057051 creator A5076421863 @default.
- W4387057051 creator A5092334110 @default.
- W4387057051 date "2023-09-25" @default.
- W4387057051 modified "2023-09-27" @default.
- W4387057051 title "Enhancing Ultimate Bearing Capacity Prediction of Cohesionless Soils Beneath Shallow Foundations with Grey Box and Hybrid AI Models" @default.
- W4387057051 cites W1571344548 @default.
- W4387057051 cites W1971222658 @default.
- W4387057051 cites W1994870008 @default.
- W4387057051 cites W1999004211 @default.
- W4387057051 cites W2013587512 @default.
- W4387057051 cites W2020277534 @default.
- W4387057051 cites W2023458977 @default.
- W4387057051 cites W2034575482 @default.
- W4387057051 cites W2035656816 @default.
- W4387057051 cites W2056682110 @default.
- W4387057051 cites W2057854313 @default.
- W4387057051 cites W2066096349 @default.
- W4387057051 cites W2078137712 @default.
- W4387057051 cites W2080609293 @default.
- W4387057051 cites W2087523516 @default.
- W4387057051 cites W2088581824 @default.
- W4387057051 cites W2091474959 @default.
- W4387057051 cites W2125283600 @default.
- W4387057051 cites W2135572043 @default.
- W4387057051 cites W2201008065 @default.
- W4387057051 cites W2807437587 @default.
- W4387057051 cites W2889393096 @default.
- W4387057051 cites W2892755442 @default.
- W4387057051 cites W2905723388 @default.
- W4387057051 cites W2915329514 @default.
- W4387057051 cites W2953829746 @default.
- W4387057051 cites W2972359851 @default.
- W4387057051 cites W2981558949 @default.
- W4387057051 cites W3004368638 @default.
- W4387057051 cites W3011540643 @default.
- W4387057051 cites W3016854129 @default.
- W4387057051 cites W3022567978 @default.
- W4387057051 cites W3094704314 @default.
- W4387057051 cites W3102212426 @default.
- W4387057051 cites W3105252106 @default.
- W4387057051 cites W3109353098 @default.
- W4387057051 cites W3136085836 @default.
- W4387057051 cites W3153808345 @default.
- W4387057051 cites W3200191244 @default.
- W4387057051 cites W3206031967 @default.
- W4387057051 cites W3209294725 @default.
- W4387057051 cites W3209464755 @default.
- W4387057051 cites W4200228606 @default.
- W4387057051 cites W4224283626 @default.
- W4387057051 cites W4234693030 @default.
- W4387057051 cites W4297957988 @default.
- W4387057051 cites W4309003927 @default.
- W4387057051 cites W4317569508 @default.
- W4387057051 cites W4322505836 @default.
- W4387057051 cites W4322762285 @default.
- W4387057051 cites W4323981583 @default.
- W4387057051 cites W4361268259 @default.
- W4387057051 cites W4362500126 @default.
- W4387057051 cites W4381054235 @default.
- W4387057051 cites W4381167749 @default.
- W4387057051 cites W4382728044 @default.
- W4387057051 cites W4383982237 @default.
- W4387057051 cites W4385718749 @default.
- W4387057051 cites W4385984487 @default.
- W4387057051 cites W4386600803 @default.
- W4387057051 doi "https://doi.org/10.3390/a16100456" @default.
- W4387057051 hasPublicationYear "2023" @default.
- W4387057051 type Work @default.
- W4387057051 citedByCount "0" @default.
- W4387057051 crossrefType "journal-article" @default.
- W4387057051 hasAuthorship W4387057051A5005223122 @default.
- W4387057051 hasAuthorship W4387057051A5032436237 @default.
- W4387057051 hasAuthorship W4387057051A5065402113 @default.
- W4387057051 hasAuthorship W4387057051A5072989208 @default.
- W4387057051 hasAuthorship W4387057051A5076421863 @default.
- W4387057051 hasAuthorship W4387057051A5092334110 @default.
- W4387057051 hasBestOaLocation W43870570511 @default.
- W4387057051 hasConcept C110332635 @default.
- W4387057051 hasConcept C126255220 @default.
- W4387057051 hasConcept C127313418 @default.
- W4387057051 hasConcept C127413603 @default.
- W4387057051 hasConcept C135677250 @default.
- W4387057051 hasConcept C154945302 @default.
- W4387057051 hasConcept C159390177 @default.
- W4387057051 hasConcept C159750122 @default.
- W4387057051 hasConcept C187320778 @default.
- W4387057051 hasConcept C2777275308 @default.
- W4387057051 hasConcept C33923547 @default.
- W4387057051 hasConcept C41008148 @default.
- W4387057051 hasConcept C50644808 @default.
- W4387057051 hasConcept C78519656 @default.
- W4387057051 hasConcept C8880873 @default.