Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387060029> ?p ?o ?g. }
- W4387060029 abstract "In some applications of quantum control, it is necessary to produce very weak excitation of a quantum system. Such an example is presented by the concept of single-photon generation in cold atomic ensembles or doped solids, e.g., by the Duan-Lukin-Cirac-Zoller (DLCZ) protocol, for which a single excitation is shared among thousands and millions of atoms or ions. Another example is the possibility to create a huge Dicke state of $N$ qubits sharing a single or a few excitations. Other examples are using tiny rotations to tune high-fidelity quantum gates, or using these tiny rotations to test high-fidelity quantum process tomography protocols. Ultrasmall excitation of a quantum transition can be generated by either a very weak or far-detuned driving field. However, these two approaches are sensitive to variations in the experimental parameters. Here we propose a different method for generating a well-defined arbitrary preselected very small transition probability---in the range from ${10}^{ensuremath{-}2}$ to ${10}^{ensuremath{-}8}$---by using composite pulse sequences. Contrary to other methods, it features both high fidelity and robustness to variations in the pulse area and the pulse duration." @default.
- W4387060029 created "2023-09-27" @default.
- W4387060029 creator A5063290260 @default.
- W4387060029 creator A5091733034 @default.
- W4387060029 date "2023-09-26" @default.
- W4387060029 modified "2023-09-27" @default.
- W4387060029 title "Deterministic generation of arbitrary ultrasmall excitation of quantum systems by composite pulse sequences" @default.
- W4387060029 cites W1514675880 @default.
- W4387060029 cites W1752270677 @default.
- W4387060029 cites W1949120740 @default.
- W4387060029 cites W1963736202 @default.
- W4387060029 cites W1966337541 @default.
- W4387060029 cites W1971436006 @default.
- W4387060029 cites W1987416881 @default.
- W4387060029 cites W1998737036 @default.
- W4387060029 cites W2000280592 @default.
- W4387060029 cites W2001403108 @default.
- W4387060029 cites W2014462856 @default.
- W4387060029 cites W2015819231 @default.
- W4387060029 cites W2017154611 @default.
- W4387060029 cites W2026617353 @default.
- W4387060029 cites W2038416298 @default.
- W4387060029 cites W2039982965 @default.
- W4387060029 cites W2053719482 @default.
- W4387060029 cites W2058226548 @default.
- W4387060029 cites W2061471327 @default.
- W4387060029 cites W2063519529 @default.
- W4387060029 cites W2063727387 @default.
- W4387060029 cites W2064548777 @default.
- W4387060029 cites W2072807913 @default.
- W4387060029 cites W2084336400 @default.
- W4387060029 cites W2086947442 @default.
- W4387060029 cites W2125993136 @default.
- W4387060029 cites W2132764286 @default.
- W4387060029 cites W2133157165 @default.
- W4387060029 cites W2135178212 @default.
- W4387060029 cites W2140834347 @default.
- W4387060029 cites W2149267954 @default.
- W4387060029 cites W2346806770 @default.
- W4387060029 cites W2502799522 @default.
- W4387060029 cites W2526826654 @default.
- W4387060029 cites W2611988627 @default.
- W4387060029 cites W2612097631 @default.
- W4387060029 cites W2613949215 @default.
- W4387060029 cites W2898040819 @default.
- W4387060029 cites W2902420940 @default.
- W4387060029 cites W2937049145 @default.
- W4387060029 cites W2950216490 @default.
- W4387060029 cites W2978124436 @default.
- W4387060029 cites W2983791159 @default.
- W4387060029 cites W3017152007 @default.
- W4387060029 cites W3037776276 @default.
- W4387060029 cites W3041653883 @default.
- W4387060029 cites W3054876477 @default.
- W4387060029 cites W3102604548 @default.
- W4387060029 cites W3116702735 @default.
- W4387060029 cites W3118428022 @default.
- W4387060029 cites W3135397694 @default.
- W4387060029 cites W3165991798 @default.
- W4387060029 cites W3181285072 @default.
- W4387060029 cites W3204728486 @default.
- W4387060029 cites W349890343 @default.
- W4387060029 cites W4211192199 @default.
- W4387060029 cites W4286214529 @default.
- W4387060029 doi "https://doi.org/10.1103/physreva.108.032614" @default.
- W4387060029 hasPublicationYear "2023" @default.
- W4387060029 type Work @default.
- W4387060029 citedByCount "0" @default.
- W4387060029 crossrefType "journal-article" @default.
- W4387060029 hasAuthorship W4387060029A5063290260 @default.
- W4387060029 hasAuthorship W4387060029A5091733034 @default.
- W4387060029 hasConcept C104317684 @default.
- W4387060029 hasConcept C121332964 @default.
- W4387060029 hasConcept C159317903 @default.
- W4387060029 hasConcept C184779094 @default.
- W4387060029 hasConcept C185592680 @default.
- W4387060029 hasConcept C203087015 @default.
- W4387060029 hasConcept C2776459999 @default.
- W4387060029 hasConcept C41008148 @default.
- W4387060029 hasConcept C55493867 @default.
- W4387060029 hasConcept C62520636 @default.
- W4387060029 hasConcept C63479239 @default.
- W4387060029 hasConcept C76155785 @default.
- W4387060029 hasConcept C83581075 @default.
- W4387060029 hasConcept C84114770 @default.
- W4387060029 hasConceptScore W4387060029C104317684 @default.
- W4387060029 hasConceptScore W4387060029C121332964 @default.
- W4387060029 hasConceptScore W4387060029C159317903 @default.
- W4387060029 hasConceptScore W4387060029C184779094 @default.
- W4387060029 hasConceptScore W4387060029C185592680 @default.
- W4387060029 hasConceptScore W4387060029C203087015 @default.
- W4387060029 hasConceptScore W4387060029C2776459999 @default.
- W4387060029 hasConceptScore W4387060029C41008148 @default.
- W4387060029 hasConceptScore W4387060029C55493867 @default.
- W4387060029 hasConceptScore W4387060029C62520636 @default.
- W4387060029 hasConceptScore W4387060029C63479239 @default.
- W4387060029 hasConceptScore W4387060029C76155785 @default.
- W4387060029 hasConceptScore W4387060029C83581075 @default.
- W4387060029 hasConceptScore W4387060029C84114770 @default.
- W4387060029 hasFunder F4320332999 @default.