Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387063658> ?p ?o ?g. }
- W4387063658 endingPage "100564" @default.
- W4387063658 startingPage "100564" @default.
- W4387063658 abstract "A Numerical solution of the Caputo-time and Riesz-space fractional reaction–diffusion model is considered in this paper. Based on finite difference schemes, we formulate both second-order and fourth-order numerical methods for the approximation of the Riesz space fractional reaction–diffusion-like equation of Fisher type. In the experiment, it was observed that the fourth-order scheme has better accuracy than the second-order method when applied to solve the fractional diffusion equation. It should be mentioned that the lower order scheme computes rapidly and save more computational time as displayed in the table of results. Finally, some simulation results are presented to justify the effectiveness and applicability of the numerical methods. The one- two- and three-dimensional results obtained for some instances of fractional order (α,β) depict some amazing complex and spatiotemporal patterns which are applicable in applied sciences and engineering." @default.
- W4387063658 created "2023-09-27" @default.
- W4387063658 creator A5018138978 @default.
- W4387063658 date "2023-12-01" @default.
- W4387063658 modified "2023-10-14" @default.
- W4387063658 title "Computational study for the Caputo sub-diffusive and Riesz super-diffusive processes with a fractional order reaction–diffusion equation" @default.
- W4387063658 cites W171286733 @default.
- W4387063658 cites W1966513244 @default.
- W4387063658 cites W1968501254 @default.
- W4387063658 cites W1970532716 @default.
- W4387063658 cites W1981277012 @default.
- W4387063658 cites W1997053564 @default.
- W4387063658 cites W2001011967 @default.
- W4387063658 cites W2006126364 @default.
- W4387063658 cites W2009063484 @default.
- W4387063658 cites W2012021517 @default.
- W4387063658 cites W2020819617 @default.
- W4387063658 cites W2027319740 @default.
- W4387063658 cites W2029530455 @default.
- W4387063658 cites W2049165066 @default.
- W4387063658 cites W2055148154 @default.
- W4387063658 cites W2064361774 @default.
- W4387063658 cites W2065232540 @default.
- W4387063658 cites W2098803915 @default.
- W4387063658 cites W2107162131 @default.
- W4387063658 cites W2111271983 @default.
- W4387063658 cites W2112647302 @default.
- W4387063658 cites W2115176036 @default.
- W4387063658 cites W2165076033 @default.
- W4387063658 cites W2167829186 @default.
- W4387063658 cites W2337208398 @default.
- W4387063658 cites W2516782538 @default.
- W4387063658 cites W2521794254 @default.
- W4387063658 cites W2783617944 @default.
- W4387063658 cites W2787544901 @default.
- W4387063658 cites W2788895278 @default.
- W4387063658 cites W2792672824 @default.
- W4387063658 cites W2793191661 @default.
- W4387063658 cites W2795096706 @default.
- W4387063658 cites W2802543365 @default.
- W4387063658 cites W2885698164 @default.
- W4387063658 cites W2889164567 @default.
- W4387063658 cites W2963010124 @default.
- W4387063658 cites W2965194208 @default.
- W4387063658 cites W2965769400 @default.
- W4387063658 cites W2977608296 @default.
- W4387063658 cites W3054902686 @default.
- W4387063658 cites W3105813679 @default.
- W4387063658 cites W3122175143 @default.
- W4387063658 cites W4213052652 @default.
- W4387063658 cites W4281680349 @default.
- W4387063658 cites W4285040552 @default.
- W4387063658 cites W4288456723 @default.
- W4387063658 cites W4307732661 @default.
- W4387063658 cites W4308490645 @default.
- W4387063658 cites W4316042090 @default.
- W4387063658 cites W4322762725 @default.
- W4387063658 cites W4362715730 @default.
- W4387063658 cites W4372317553 @default.
- W4387063658 doi "https://doi.org/10.1016/j.padiff.2023.100564" @default.
- W4387063658 hasPublicationYear "2023" @default.
- W4387063658 type Work @default.
- W4387063658 citedByCount "0" @default.
- W4387063658 crossrefType "journal-article" @default.
- W4387063658 hasAuthorship W4387063658A5018138978 @default.
- W4387063658 hasBestOaLocation W43870636581 @default.
- W4387063658 hasConcept C10138342 @default.
- W4387063658 hasConcept C111919701 @default.
- W4387063658 hasConcept C121231716 @default.
- W4387063658 hasConcept C121332964 @default.
- W4387063658 hasConcept C134306372 @default.
- W4387063658 hasConcept C136264566 @default.
- W4387063658 hasConcept C154249771 @default.
- W4387063658 hasConcept C154815372 @default.
- W4387063658 hasConcept C162324750 @default.
- W4387063658 hasConcept C164602753 @default.
- W4387063658 hasConcept C175025494 @default.
- W4387063658 hasConcept C182306322 @default.
- W4387063658 hasConcept C189987565 @default.
- W4387063658 hasConcept C2778572836 @default.
- W4387063658 hasConcept C2780378061 @default.
- W4387063658 hasConcept C28826006 @default.
- W4387063658 hasConcept C3017618536 @default.
- W4387063658 hasConcept C33923547 @default.
- W4387063658 hasConcept C41008148 @default.
- W4387063658 hasConcept C556758197 @default.
- W4387063658 hasConcept C56739046 @default.
- W4387063658 hasConcept C571446 @default.
- W4387063658 hasConcept C61031149 @default.
- W4387063658 hasConcept C69357855 @default.
- W4387063658 hasConcept C77618280 @default.
- W4387063658 hasConcept C97355855 @default.
- W4387063658 hasConceptScore W4387063658C10138342 @default.
- W4387063658 hasConceptScore W4387063658C111919701 @default.
- W4387063658 hasConceptScore W4387063658C121231716 @default.
- W4387063658 hasConceptScore W4387063658C121332964 @default.
- W4387063658 hasConceptScore W4387063658C134306372 @default.
- W4387063658 hasConceptScore W4387063658C136264566 @default.