Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387063830> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4387063830 endingPage "971" @default.
- W4387063830 startingPage "963" @default.
- W4387063830 abstract "Risk prediction is an important task to ensuring the driving safety of railway trams. Although data-driven intelligent methods are proved to be effective for driving risk prediction, accuracy is still a top concern for the challenges of data quality which mainly represent as the unbalanced datasets. This study focuses on applying feature extraction and data augmentation methods to achieve effective risk prediction for railway trams, and proposes an approach based on a self-adaptive K-means clustering algorithm and the least squares deep convolution generative adversarial network (LS-DCGAN). The data preprocessing methods are proposed, which include the K-means algorithm to cluster the locations of trams and the extreme gradient boosting recursive feature elimination based feature selection algorithm to retain the key features. The LS-DCGAN model is designed for sparse sample expansion, aiming to address the sample category distribution imbalance problem. The experiments implemented with the public and real datasets show that the proposed approach can reach a high accuracy of 90.69%, which can greatly enhances the tram driving safety." @default.
- W4387063830 created "2023-09-27" @default.
- W4387063830 creator A5038027960 @default.
- W4387063830 creator A5038878907 @default.
- W4387063830 creator A5051441183 @default.
- W4387063830 creator A5073391035 @default.
- W4387063830 creator A5082538267 @default.
- W4387063830 creator A5085338227 @default.
- W4387063830 date "2023-09-01" @default.
- W4387063830 modified "2023-09-29" @default.
- W4387063830 title "A Risk Prediction Model Based on Crash History Data for Railway Trams" @default.
- W4387063830 cites W1905322488 @default.
- W4387063830 cites W2010725166 @default.
- W4387063830 cites W2143426320 @default.
- W4387063830 cites W2324238275 @default.
- W4387063830 cites W2339203807 @default.
- W4387063830 cites W2593414223 @default.
- W4387063830 cites W2755577605 @default.
- W4387063830 cites W2789511664 @default.
- W4387063830 cites W2901314575 @default.
- W4387063830 cites W2902792509 @default.
- W4387063830 cites W2914265602 @default.
- W4387063830 cites W2970694612 @default.
- W4387063830 cites W2988225712 @default.
- W4387063830 cites W2997214531 @default.
- W4387063830 cites W3007532555 @default.
- W4387063830 cites W3093176731 @default.
- W4387063830 cites W3192778626 @default.
- W4387063830 cites W3206704750 @default.
- W4387063830 cites W4200432283 @default.
- W4387063830 cites W4206049888 @default.
- W4387063830 cites W4213003826 @default.
- W4387063830 doi "https://doi.org/10.23919/cje.2022.00.231" @default.
- W4387063830 hasPublicationYear "2023" @default.
- W4387063830 type Work @default.
- W4387063830 citedByCount "0" @default.
- W4387063830 crossrefType "journal-article" @default.
- W4387063830 hasAuthorship W4387063830A5038027960 @default.
- W4387063830 hasAuthorship W4387063830A5038878907 @default.
- W4387063830 hasAuthorship W4387063830A5051441183 @default.
- W4387063830 hasAuthorship W4387063830A5073391035 @default.
- W4387063830 hasAuthorship W4387063830A5082538267 @default.
- W4387063830 hasAuthorship W4387063830A5085338227 @default.
- W4387063830 hasBestOaLocation W43870638301 @default.
- W4387063830 hasConcept C119857082 @default.
- W4387063830 hasConcept C124101348 @default.
- W4387063830 hasConcept C148483581 @default.
- W4387063830 hasConcept C154945302 @default.
- W4387063830 hasConcept C41008148 @default.
- W4387063830 hasConcept C46686674 @default.
- W4387063830 hasConcept C73555534 @default.
- W4387063830 hasConceptScore W4387063830C119857082 @default.
- W4387063830 hasConceptScore W4387063830C124101348 @default.
- W4387063830 hasConceptScore W4387063830C148483581 @default.
- W4387063830 hasConceptScore W4387063830C154945302 @default.
- W4387063830 hasConceptScore W4387063830C41008148 @default.
- W4387063830 hasConceptScore W4387063830C46686674 @default.
- W4387063830 hasConceptScore W4387063830C73555534 @default.
- W4387063830 hasFunder F4320321001 @default.
- W4387063830 hasIssue "5" @default.
- W4387063830 hasLocation W43870638301 @default.
- W4387063830 hasOpenAccess W4387063830 @default.
- W4387063830 hasPrimaryLocation W43870638301 @default.
- W4387063830 hasRelatedWork W1987859285 @default.
- W4387063830 hasRelatedWork W1996541855 @default.
- W4387063830 hasRelatedWork W2293820727 @default.
- W4387063830 hasRelatedWork W2909025082 @default.
- W4387063830 hasRelatedWork W3087493185 @default.
- W4387063830 hasRelatedWork W3195168932 @default.
- W4387063830 hasRelatedWork W3200179079 @default.
- W4387063830 hasRelatedWork W4200061235 @default.
- W4387063830 hasRelatedWork W4293525103 @default.
- W4387063830 hasRelatedWork W4313488044 @default.
- W4387063830 hasVolume "32" @default.
- W4387063830 isParatext "false" @default.
- W4387063830 isRetracted "false" @default.
- W4387063830 workType "article" @default.