Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387067228> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4387067228 endingPage "130" @default.
- W4387067228 startingPage "119" @default.
- W4387067228 abstract "The role of agricultural development is very important in the economy of a country. However, the prevalence of numerous plant diseases significantly slows down crop growth and reduces its quality. Previously, plant diseases and quality of the plants were detected using digital image processing, recently deep learning break through produced better results compared with traditional approach. Due to the presence of low-contrast information in the input samples, the precise identification and classification of crop leaf diseases is a difficult and time-consuming process. The presence of noise and blurriness effects in the input images as well as changes in the size, location, and structure of the crop add to the difficulty of the classification process. A reliable drone-based deep learning approach is suggested in order to address the shortcomings of existing techniques. More specifically, our proposed approach focuses on an EfficientNetV2-B4 with extra dense layers. An end-to-end training architecture is used by the customized EfficientNetV2-B4 to calculate the deep key points and classify them in the corresponding classes. A standard dataset, specifically the Plant Village data from Kaggle, as well as real samples were taken with a drone is utilized for performance evaluation, which is complicated in the aspect of varying image samples with diverse image capturing conditions. The empirical results point out that the model outperforms several existing methods in terms of average accuracy of more than 98% in prediction. The results also demonstrate that our strategy is less time-intensive than other previous strategies while also confirming its resilience." @default.
- W4387067228 created "2023-09-27" @default.
- W4387067228 creator A5044214688 @default.
- W4387067228 creator A5053992284 @default.
- W4387067228 creator A5072868176 @default.
- W4387067228 date "2023-01-01" @default.
- W4387067228 modified "2023-09-27" @default.
- W4387067228 title "Detection of Pathogens in Plant Leaves Using Drone-Based Deep Learning Approach" @default.
- W4387067228 cites W2470368200 @default.
- W4387067228 cites W2473156356 @default.
- W4387067228 cites W2536452926 @default.
- W4387067228 cites W3214460882 @default.
- W4387067228 cites W4206706039 @default.
- W4387067228 cites W4245765171 @default.
- W4387067228 cites W4280610169 @default.
- W4387067228 cites W4307767717 @default.
- W4387067228 doi "https://doi.org/10.1007/978-981-99-5056-0_6" @default.
- W4387067228 hasPublicationYear "2023" @default.
- W4387067228 type Work @default.
- W4387067228 citedByCount "0" @default.
- W4387067228 crossrefType "book-chapter" @default.
- W4387067228 hasAuthorship W4387067228A5044214688 @default.
- W4387067228 hasAuthorship W4387067228A5053992284 @default.
- W4387067228 hasAuthorship W4387067228A5072868176 @default.
- W4387067228 hasConcept C108583219 @default.
- W4387067228 hasConcept C111472728 @default.
- W4387067228 hasConcept C111919701 @default.
- W4387067228 hasConcept C115961682 @default.
- W4387067228 hasConcept C116834253 @default.
- W4387067228 hasConcept C119857082 @default.
- W4387067228 hasConcept C138885662 @default.
- W4387067228 hasConcept C153180895 @default.
- W4387067228 hasConcept C154945302 @default.
- W4387067228 hasConcept C2779530757 @default.
- W4387067228 hasConcept C41008148 @default.
- W4387067228 hasConcept C54355233 @default.
- W4387067228 hasConcept C59519942 @default.
- W4387067228 hasConcept C59822182 @default.
- W4387067228 hasConcept C86803240 @default.
- W4387067228 hasConcept C98045186 @default.
- W4387067228 hasConcept C99498987 @default.
- W4387067228 hasConceptScore W4387067228C108583219 @default.
- W4387067228 hasConceptScore W4387067228C111472728 @default.
- W4387067228 hasConceptScore W4387067228C111919701 @default.
- W4387067228 hasConceptScore W4387067228C115961682 @default.
- W4387067228 hasConceptScore W4387067228C116834253 @default.
- W4387067228 hasConceptScore W4387067228C119857082 @default.
- W4387067228 hasConceptScore W4387067228C138885662 @default.
- W4387067228 hasConceptScore W4387067228C153180895 @default.
- W4387067228 hasConceptScore W4387067228C154945302 @default.
- W4387067228 hasConceptScore W4387067228C2779530757 @default.
- W4387067228 hasConceptScore W4387067228C41008148 @default.
- W4387067228 hasConceptScore W4387067228C54355233 @default.
- W4387067228 hasConceptScore W4387067228C59519942 @default.
- W4387067228 hasConceptScore W4387067228C59822182 @default.
- W4387067228 hasConceptScore W4387067228C86803240 @default.
- W4387067228 hasConceptScore W4387067228C98045186 @default.
- W4387067228 hasConceptScore W4387067228C99498987 @default.
- W4387067228 hasLocation W43870672281 @default.
- W4387067228 hasOpenAccess W4387067228 @default.
- W4387067228 hasPrimaryLocation W43870672281 @default.
- W4387067228 hasRelatedWork W3014300295 @default.
- W4387067228 hasRelatedWork W3164822677 @default.
- W4387067228 hasRelatedWork W4220882927 @default.
- W4387067228 hasRelatedWork W4223943233 @default.
- W4387067228 hasRelatedWork W4225161397 @default.
- W4387067228 hasRelatedWork W4312200629 @default.
- W4387067228 hasRelatedWork W4360585206 @default.
- W4387067228 hasRelatedWork W4364306694 @default.
- W4387067228 hasRelatedWork W4380075502 @default.
- W4387067228 hasRelatedWork W4380086463 @default.
- W4387067228 isParatext "false" @default.
- W4387067228 isRetracted "false" @default.
- W4387067228 workType "book-chapter" @default.