Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387068271> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4387068271 endingPage "17" @default.
- W4387068271 startingPage "1" @default.
- W4387068271 abstract "Time-series forecasting (TSF) is a traditional problem in the field of artificial intelligence, and models such as recurrent neural network, long short-term memory, and gate recurrent units have contributed to improving its predictive accuracy. Furthermore, model structures have been proposed to combine time-series decomposition methods such as seasonal-trend decomposition using LOESS. However, this approach is learned in an independent model for each component, and therefore, it cannot learn the relationships between the time-series components. In this study, we propose a new neural architecture called a correlation recurrent unit (CRU) that can perform time-series decomposition within a neural cell and learn correlations (autocorrelation and correlation) between each decomposition component. The proposed neural architecture was evaluated through comparative experiments with previous studies using four univariate and four multivariate time-series datasets. The results showed that long- and short-term predictive performance was improved by more than 10%. The experimental results indicate that the proposed CRU is an excellent method for TSF problems compared to other neural architectures." @default.
- W4387068271 created "2023-09-27" @default.
- W4387068271 creator A5031280773 @default.
- W4387068271 creator A5047158713 @default.
- W4387068271 creator A5091200724 @default.
- W4387068271 date "2023-01-01" @default.
- W4387068271 modified "2023-10-16" @default.
- W4387068271 title "Correlation Recurrent Units: A Novel Neural Architecture for Improving the Predictive Performance of Time-Series Data" @default.
- W4387068271 doi "https://doi.org/10.1109/tpami.2023.3319557" @default.
- W4387068271 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37751345" @default.
- W4387068271 hasPublicationYear "2023" @default.
- W4387068271 type Work @default.
- W4387068271 citedByCount "0" @default.
- W4387068271 crossrefType "journal-article" @default.
- W4387068271 hasAuthorship W4387068271A5031280773 @default.
- W4387068271 hasAuthorship W4387068271A5047158713 @default.
- W4387068271 hasAuthorship W4387068271A5091200724 @default.
- W4387068271 hasConcept C105795698 @default.
- W4387068271 hasConcept C107054158 @default.
- W4387068271 hasConcept C119857082 @default.
- W4387068271 hasConcept C121332964 @default.
- W4387068271 hasConcept C124101348 @default.
- W4387068271 hasConcept C124681953 @default.
- W4387068271 hasConcept C143724316 @default.
- W4387068271 hasConcept C147168706 @default.
- W4387068271 hasConcept C151406439 @default.
- W4387068271 hasConcept C151730666 @default.
- W4387068271 hasConcept C153180895 @default.
- W4387068271 hasConcept C153294291 @default.
- W4387068271 hasConcept C154945302 @default.
- W4387068271 hasConcept C160467669 @default.
- W4387068271 hasConcept C161584116 @default.
- W4387068271 hasConcept C168167062 @default.
- W4387068271 hasConcept C18903297 @default.
- W4387068271 hasConcept C199163554 @default.
- W4387068271 hasConcept C33923547 @default.
- W4387068271 hasConcept C41008148 @default.
- W4387068271 hasConcept C50644808 @default.
- W4387068271 hasConcept C5297727 @default.
- W4387068271 hasConcept C86803240 @default.
- W4387068271 hasConcept C97355855 @default.
- W4387068271 hasConceptScore W4387068271C105795698 @default.
- W4387068271 hasConceptScore W4387068271C107054158 @default.
- W4387068271 hasConceptScore W4387068271C119857082 @default.
- W4387068271 hasConceptScore W4387068271C121332964 @default.
- W4387068271 hasConceptScore W4387068271C124101348 @default.
- W4387068271 hasConceptScore W4387068271C124681953 @default.
- W4387068271 hasConceptScore W4387068271C143724316 @default.
- W4387068271 hasConceptScore W4387068271C147168706 @default.
- W4387068271 hasConceptScore W4387068271C151406439 @default.
- W4387068271 hasConceptScore W4387068271C151730666 @default.
- W4387068271 hasConceptScore W4387068271C153180895 @default.
- W4387068271 hasConceptScore W4387068271C153294291 @default.
- W4387068271 hasConceptScore W4387068271C154945302 @default.
- W4387068271 hasConceptScore W4387068271C160467669 @default.
- W4387068271 hasConceptScore W4387068271C161584116 @default.
- W4387068271 hasConceptScore W4387068271C168167062 @default.
- W4387068271 hasConceptScore W4387068271C18903297 @default.
- W4387068271 hasConceptScore W4387068271C199163554 @default.
- W4387068271 hasConceptScore W4387068271C33923547 @default.
- W4387068271 hasConceptScore W4387068271C41008148 @default.
- W4387068271 hasConceptScore W4387068271C50644808 @default.
- W4387068271 hasConceptScore W4387068271C5297727 @default.
- W4387068271 hasConceptScore W4387068271C86803240 @default.
- W4387068271 hasConceptScore W4387068271C97355855 @default.
- W4387068271 hasLocation W43870682711 @default.
- W4387068271 hasLocation W43870682712 @default.
- W4387068271 hasOpenAccess W4387068271 @default.
- W4387068271 hasPrimaryLocation W43870682711 @default.
- W4387068271 hasRelatedWork W189280425 @default.
- W4387068271 hasRelatedWork W2169125333 @default.
- W4387068271 hasRelatedWork W2350758509 @default.
- W4387068271 hasRelatedWork W2354804553 @default.
- W4387068271 hasRelatedWork W2375884488 @default.
- W4387068271 hasRelatedWork W2511533087 @default.
- W4387068271 hasRelatedWork W2773554974 @default.
- W4387068271 hasRelatedWork W2909813883 @default.
- W4387068271 hasRelatedWork W3017363799 @default.
- W4387068271 hasRelatedWork W4310557868 @default.
- W4387068271 isParatext "false" @default.
- W4387068271 isRetracted "false" @default.
- W4387068271 workType "article" @default.