Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387072955> ?p ?o ?g. }
- W4387072955 endingPage "108269" @default.
- W4387072955 startingPage "108269" @default.
- W4387072955 abstract "Timely monitoring and precise estimation of body composition parameters, such as fat mass (FM) and fat-free mass (FFM), are crucial for pig production. Therefore, this study aimed to utilize three machine learning models, namely multiple linear regression (MLR), random forest regression (RFR), and support vector regression (SVR), to predict FM and FFM in growing-finishing pigs using four input combinations of three variables, i.e., mass of pigs, feed intake, and surface temperature of pigs. An ultrasound-based back-fat depth measurement approach was used to determine FM and FFM, and these measurements were compared with reference measurements obtained from slaughtered pigs. Data from two experimental periods in 2021 and 2022 were used for training and testing these models. Performance metrics, including the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE), were used to evaluate the models' performance and stability. The results showed that the SVR model had the highest accuracy in predicting FM and FFM, with the ability to explain the relationship between input and target variables up to 94.4% in FM and 94.6% in FFM prediction. Additionally, the SVR model consistently outperformed the RFR and MLR models in predicting FM, with an increase in R2 of up to 6.72% and 27.96%, respectively, and a reduction in RMSE of up to 24.06% and 36.82%, respectively, across different input combinations. Similar results were obtained in FFM prediction, where the SVR model showed an increase in R2 of up to 6.47% and 22.45%, and a reduction in RMSE of up to 23.96% and 36.57% compared to RFR and MLR models, respectively. Moreover, the SVR model demonstrated the highest stability, with only 2.9% to 3.3% decrease in R2 during the testing phase compared to the training phase, while the RFR model exhibited the worst stability. Findings of the present study suggested that the SVR model was the most stable and reliable, along with the ultrasound-based back-fat depth approach for measuring FM and FFM in growing-finishing pigs. This approach could aid in monitoring meat quality and providing a rapid overview of body composition for pig farmers." @default.
- W4387072955 created "2023-09-27" @default.
- W4387072955 creator A5001685195 @default.
- W4387072955 creator A5002832839 @default.
- W4387072955 creator A5040609307 @default.
- W4387072955 creator A5046573359 @default.
- W4387072955 creator A5059890655 @default.
- W4387072955 creator A5071181978 @default.
- W4387072955 creator A5073793188 @default.
- W4387072955 date "2023-10-01" @default.
- W4387072955 modified "2023-10-07" @default.
- W4387072955 title "Prediction of body composition in growing-finishing pigs using ultrasound based back-fat depth approach and machine learning algorithms" @default.
- W4387072955 cites W1605688901 @default.
- W4387072955 cites W1725304983 @default.
- W4387072955 cites W1964357740 @default.
- W4387072955 cites W1971100490 @default.
- W4387072955 cites W1972597523 @default.
- W4387072955 cites W1978932888 @default.
- W4387072955 cites W1983778129 @default.
- W4387072955 cites W1990210925 @default.
- W4387072955 cites W1995674494 @default.
- W4387072955 cites W2032909430 @default.
- W4387072955 cites W2043887192 @default.
- W4387072955 cites W2059594712 @default.
- W4387072955 cites W2094670874 @default.
- W4387072955 cites W2104722047 @default.
- W4387072955 cites W2113242816 @default.
- W4387072955 cites W2113393240 @default.
- W4387072955 cites W2120677412 @default.
- W4387072955 cites W2123211977 @default.
- W4387072955 cites W2126489586 @default.
- W4387072955 cites W213164950 @default.
- W4387072955 cites W2138012664 @default.
- W4387072955 cites W2165663212 @default.
- W4387072955 cites W2170121048 @default.
- W4387072955 cites W2187293977 @default.
- W4387072955 cites W2316991778 @default.
- W4387072955 cites W2400938365 @default.
- W4387072955 cites W2405141207 @default.
- W4387072955 cites W2414808480 @default.
- W4387072955 cites W2513738616 @default.
- W4387072955 cites W2566749790 @default.
- W4387072955 cites W2572047766 @default.
- W4387072955 cites W2755978148 @default.
- W4387072955 cites W2769324614 @default.
- W4387072955 cites W2801957929 @default.
- W4387072955 cites W2883275652 @default.
- W4387072955 cites W2889246260 @default.
- W4387072955 cites W2894669255 @default.
- W4387072955 cites W2904452810 @default.
- W4387072955 cites W2911964244 @default.
- W4387072955 cites W2930669685 @default.
- W4387072955 cites W2949630416 @default.
- W4387072955 cites W2996089053 @default.
- W4387072955 cites W3026136812 @default.
- W4387072955 cites W3033316444 @default.
- W4387072955 cites W3095300548 @default.
- W4387072955 cites W3097245740 @default.
- W4387072955 cites W3112599674 @default.
- W4387072955 cites W3113768306 @default.
- W4387072955 cites W3120614464 @default.
- W4387072955 cites W3127955137 @default.
- W4387072955 cites W3135558951 @default.
- W4387072955 cites W3139274269 @default.
- W4387072955 cites W3151128734 @default.
- W4387072955 cites W3157980132 @default.
- W4387072955 cites W3167623740 @default.
- W4387072955 cites W3178149874 @default.
- W4387072955 cites W4213219869 @default.
- W4387072955 cites W4291012513 @default.
- W4387072955 cites W4303649638 @default.
- W4387072955 cites W4310019159 @default.
- W4387072955 cites W4313436107 @default.
- W4387072955 cites W4361267976 @default.
- W4387072955 cites W4377261880 @default.
- W4387072955 doi "https://doi.org/10.1016/j.compag.2023.108269" @default.
- W4387072955 hasPublicationYear "2023" @default.
- W4387072955 type Work @default.
- W4387072955 citedByCount "0" @default.
- W4387072955 crossrefType "journal-article" @default.
- W4387072955 hasAuthorship W4387072955A5001685195 @default.
- W4387072955 hasAuthorship W4387072955A5002832839 @default.
- W4387072955 hasAuthorship W4387072955A5040609307 @default.
- W4387072955 hasAuthorship W4387072955A5046573359 @default.
- W4387072955 hasAuthorship W4387072955A5059890655 @default.
- W4387072955 hasAuthorship W4387072955A5071181978 @default.
- W4387072955 hasAuthorship W4387072955A5073793188 @default.
- W4387072955 hasConcept C105795698 @default.
- W4387072955 hasConcept C11413529 @default.
- W4387072955 hasConcept C119857082 @default.
- W4387072955 hasConcept C12267149 @default.
- W4387072955 hasConcept C128990827 @default.
- W4387072955 hasConcept C139945424 @default.
- W4387072955 hasConcept C152877465 @default.
- W4387072955 hasConcept C167085575 @default.
- W4387072955 hasConcept C169258074 @default.
- W4387072955 hasConcept C2780092901 @default.
- W4387072955 hasConcept C33923547 @default.