Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387079328> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4387079328 endingPage "107514" @default.
- W4387079328 startingPage "107514" @default.
- W4387079328 abstract "Lung tumor PET and CT image fusion is a key technology in clinical diagnosis. However, the existing fusion methods are difficult to obtain fused images with high contrast, prominent morphological features, and accurate spatial localization. In this paper, an isomorphic Unet fusion model (GMRE-iUnet) for lung tumor PET and CT images is proposed to address the above problems. The main idea of this network is as following: Firstly, this paper constructs an isomorphic Unet fusion network, which contains two independent multiscale dual encoders Unet, it can capture the features of the lesion region, spatial localization, and enrich the morphological information. Secondly, a Hybrid CNN-Transformer feature extraction module (HCTrans) is constructed to effectively integrate local lesion features and global contextual information. In addition, the residual axial attention feature compensation module (RAAFC) is embedded into the Unet to capture fine-grained information as compensation features, which makes the model focus on local connections in neighboring pixels. Thirdly, a hybrid attentional feature fusion module (HAFF) is designed for multiscale feature information fusion, it aggregates edge information and detail representations using local entropy and Gaussian filtering. Finally, the experiment results on the multimodal lung tumor medical image dataset show that the model in this paper can achieve excellent fusion performance compared with other eight fusion models. In CT mediastinal window images and PET images comparison experiment, AG, EI, QAB/F, SF, SD, and IE indexes are improved by 16.19%, 26%, 3.81%, 1.65%, 3.91% and 8.01%, respectively. GMRE-iUnet can highlight the information and morphological features of the lesion areas and provide practical help for the aided diagnosis of lung tumors." @default.
- W4387079328 created "2023-09-28" @default.
- W4387079328 creator A5019397177 @default.
- W4387079328 creator A5020746135 @default.
- W4387079328 creator A5040485508 @default.
- W4387079328 creator A5057577209 @default.
- W4387079328 creator A5066119228 @default.
- W4387079328 creator A5067280360 @default.
- W4387079328 date "2023-11-01" @default.
- W4387079328 modified "2023-10-14" @default.
- W4387079328 title "GMRE-iUnet: Isomorphic Unet fusion model for PET and CT lung tumor images" @default.
- W4387079328 cites W2073779945 @default.
- W4387079328 cites W2094162745 @default.
- W4387079328 cites W2123111982 @default.
- W4387079328 cites W2146353910 @default.
- W4387079328 cites W2791710889 @default.
- W4387079328 cites W2907816335 @default.
- W4387079328 cites W2940940727 @default.
- W4387079328 cites W3000491333 @default.
- W4387079328 cites W3007473102 @default.
- W4387079328 cites W3007486523 @default.
- W4387079328 cites W3011768656 @default.
- W4387079328 cites W3120113457 @default.
- W4387079328 cites W3155817208 @default.
- W4387079328 cites W3171420223 @default.
- W4387079328 cites W3215504204 @default.
- W4387079328 cites W4213109153 @default.
- W4387079328 cites W4229450193 @default.
- W4387079328 cites W4285306712 @default.
- W4387079328 cites W4306167223 @default.
- W4387079328 cites W4306954497 @default.
- W4387079328 cites W4312139090 @default.
- W4387079328 cites W4312737473 @default.
- W4387079328 cites W4315652215 @default.
- W4387079328 cites W4319764605 @default.
- W4387079328 cites W4319792453 @default.
- W4387079328 cites W4319874900 @default.
- W4387079328 cites W4320717302 @default.
- W4387079328 cites W4365504994 @default.
- W4387079328 cites W4366482244 @default.
- W4387079328 cites W4385660754 @default.
- W4387079328 doi "https://doi.org/10.1016/j.compbiomed.2023.107514" @default.
- W4387079328 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37826951" @default.
- W4387079328 hasPublicationYear "2023" @default.
- W4387079328 type Work @default.
- W4387079328 citedByCount "0" @default.
- W4387079328 crossrefType "journal-article" @default.
- W4387079328 hasAuthorship W4387079328A5019397177 @default.
- W4387079328 hasAuthorship W4387079328A5020746135 @default.
- W4387079328 hasAuthorship W4387079328A5040485508 @default.
- W4387079328 hasAuthorship W4387079328A5057577209 @default.
- W4387079328 hasAuthorship W4387079328A5066119228 @default.
- W4387079328 hasAuthorship W4387079328A5067280360 @default.
- W4387079328 hasConcept C111919701 @default.
- W4387079328 hasConcept C115961682 @default.
- W4387079328 hasConcept C118505674 @default.
- W4387079328 hasConcept C138885662 @default.
- W4387079328 hasConcept C153180895 @default.
- W4387079328 hasConcept C154945302 @default.
- W4387079328 hasConcept C158525013 @default.
- W4387079328 hasConcept C160633673 @default.
- W4387079328 hasConcept C2776401178 @default.
- W4387079328 hasConcept C31972630 @default.
- W4387079328 hasConcept C41008148 @default.
- W4387079328 hasConcept C41895202 @default.
- W4387079328 hasConcept C69744172 @default.
- W4387079328 hasConceptScore W4387079328C111919701 @default.
- W4387079328 hasConceptScore W4387079328C115961682 @default.
- W4387079328 hasConceptScore W4387079328C118505674 @default.
- W4387079328 hasConceptScore W4387079328C138885662 @default.
- W4387079328 hasConceptScore W4387079328C153180895 @default.
- W4387079328 hasConceptScore W4387079328C154945302 @default.
- W4387079328 hasConceptScore W4387079328C158525013 @default.
- W4387079328 hasConceptScore W4387079328C160633673 @default.
- W4387079328 hasConceptScore W4387079328C2776401178 @default.
- W4387079328 hasConceptScore W4387079328C31972630 @default.
- W4387079328 hasConceptScore W4387079328C41008148 @default.
- W4387079328 hasConceptScore W4387079328C41895202 @default.
- W4387079328 hasConceptScore W4387079328C69744172 @default.
- W4387079328 hasLocation W43870793281 @default.
- W4387079328 hasLocation W43870793282 @default.
- W4387079328 hasOpenAccess W4387079328 @default.
- W4387079328 hasPrimaryLocation W43870793281 @default.
- W4387079328 hasRelatedWork W1490651872 @default.
- W4387079328 hasRelatedWork W1750358731 @default.
- W4387079328 hasRelatedWork W2139242969 @default.
- W4387079328 hasRelatedWork W2204403038 @default.
- W4387079328 hasRelatedWork W2350422455 @default.
- W4387079328 hasRelatedWork W2370195708 @default.
- W4387079328 hasRelatedWork W2379054866 @default.
- W4387079328 hasRelatedWork W2549658594 @default.
- W4387079328 hasRelatedWork W2788731446 @default.
- W4387079328 hasRelatedWork W3152170969 @default.
- W4387079328 hasVolume "166" @default.
- W4387079328 isParatext "false" @default.
- W4387079328 isRetracted "false" @default.
- W4387079328 workType "article" @default.