Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387079783> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4387079783 endingPage "121714" @default.
- W4387079783 startingPage "121714" @default.
- W4387079783 abstract "Hybrid methods combining data decomposition with deep learning have recently exhibited remarkable performance in PM2.5 concentration forecasting. However, these methods still encounter limitations when confronted with monitoring sites lacking adequate historical data. To overcome this challenge, this study proposes a novel methodological framework named as Multi-source Variational Mode Transfer Learning (MSVMTL) that integrates data decomposition, deep learning, and multi-source transfer learning strategies. The framework consists of four stages: source domain selection, data decomposition by Variational Mode Decomposition (VMD), mode sequence clustering, and multi-source mode transfer learning. The source domain selection stage utilizes EMS (Euclidean Distance and Maximum Mean Discrepancy Distance) to identify the most suitable source domain for knowledge transfer. The mode sequence clustering employs the LDDK algorithm (Largest Triangle Three Buckets, Dynamic Time Warping, Dynamic Time Warping Barycenter Averaging, and K-means) to cluster modes from VMD-derived domains. The multi-source mode transfer stage combines VMD with pre-training and fine-tuning, leveraging source domain knowledge for target domain prediction. To validate the proposed framework, a case study, including multiple sets of comparative experiments and ablation study, was conducted using data from 12 air quality monitoring sites in Beijing, China. The experimental results demonstrate that EMS, LDDK, and multi-source mode transfer learning strategy all achieved excellent performance, and the presented MSVMTL significantly enhances the prediction accuracy of PM2.5 concentrations at monitoring sites with limited historical data." @default.
- W4387079783 created "2023-09-28" @default.
- W4387079783 creator A5015351531 @default.
- W4387079783 creator A5069413418 @default.
- W4387079783 creator A5087588433 @default.
- W4387079783 creator A5091544418 @default.
- W4387079783 date "2024-03-01" @default.
- W4387079783 modified "2023-10-18" @default.
- W4387079783 title "Multi-source variational mode transfer learning for enhanced PM2.5 concentration forecasting at data-limited monitoring stations" @default.
- W4387079783 cites W2901899013 @default.
- W4387079783 cites W2948490758 @default.
- W4387079783 cites W2955613755 @default.
- W4387079783 cites W2981704113 @default.
- W4387079783 cites W2990792561 @default.
- W4387079783 cites W2990955039 @default.
- W4387079783 cites W3004417816 @default.
- W4387079783 cites W3005275992 @default.
- W4387079783 cites W3005619874 @default.
- W4387079783 cites W3009880500 @default.
- W4387079783 cites W3108150863 @default.
- W4387079783 cites W3117940150 @default.
- W4387079783 cites W3119665391 @default.
- W4387079783 cites W3137937485 @default.
- W4387079783 cites W3159356635 @default.
- W4387079783 cites W3199850541 @default.
- W4387079783 cites W4200026345 @default.
- W4387079783 cites W4220757690 @default.
- W4387079783 cites W4224275571 @default.
- W4387079783 cites W4294203719 @default.
- W4387079783 cites W4295530761 @default.
- W4387079783 cites W4307057669 @default.
- W4387079783 cites W4308645606 @default.
- W4387079783 cites W4313577291 @default.
- W4387079783 cites W4316499318 @default.
- W4387079783 cites W4320486890 @default.
- W4387079783 cites W4323669935 @default.
- W4387079783 cites W4366993105 @default.
- W4387079783 doi "https://doi.org/10.1016/j.eswa.2023.121714" @default.
- W4387079783 hasPublicationYear "2024" @default.
- W4387079783 type Work @default.
- W4387079783 citedByCount "0" @default.
- W4387079783 crossrefType "journal-article" @default.
- W4387079783 hasAuthorship W4387079783A5015351531 @default.
- W4387079783 hasAuthorship W4387079783A5069413418 @default.
- W4387079783 hasAuthorship W4387079783A5087588433 @default.
- W4387079783 hasAuthorship W4387079783A5091544418 @default.
- W4387079783 hasConcept C108583219 @default.
- W4387079783 hasConcept C119857082 @default.
- W4387079783 hasConcept C124101348 @default.
- W4387079783 hasConcept C150899416 @default.
- W4387079783 hasConcept C153180895 @default.
- W4387079783 hasConcept C154945302 @default.
- W4387079783 hasConcept C41008148 @default.
- W4387079783 hasConcept C73555534 @default.
- W4387079783 hasConcept C88516994 @default.
- W4387079783 hasConceptScore W4387079783C108583219 @default.
- W4387079783 hasConceptScore W4387079783C119857082 @default.
- W4387079783 hasConceptScore W4387079783C124101348 @default.
- W4387079783 hasConceptScore W4387079783C150899416 @default.
- W4387079783 hasConceptScore W4387079783C153180895 @default.
- W4387079783 hasConceptScore W4387079783C154945302 @default.
- W4387079783 hasConceptScore W4387079783C41008148 @default.
- W4387079783 hasConceptScore W4387079783C73555534 @default.
- W4387079783 hasConceptScore W4387079783C88516994 @default.
- W4387079783 hasFunder F4320321001 @default.
- W4387079783 hasLocation W43870797831 @default.
- W4387079783 hasOpenAccess W4387079783 @default.
- W4387079783 hasPrimaryLocation W43870797831 @default.
- W4387079783 hasRelatedWork W2951211570 @default.
- W4387079783 hasRelatedWork W3023427754 @default.
- W4387079783 hasRelatedWork W3131673289 @default.
- W4387079783 hasRelatedWork W3167935049 @default.
- W4387079783 hasRelatedWork W3178390372 @default.
- W4387079783 hasRelatedWork W3192840557 @default.
- W4387079783 hasRelatedWork W4206357785 @default.
- W4387079783 hasRelatedWork W4281381188 @default.
- W4387079783 hasRelatedWork W4375928479 @default.
- W4387079783 hasRelatedWork W4380075502 @default.
- W4387079783 hasVolume "238" @default.
- W4387079783 isParatext "false" @default.
- W4387079783 isRetracted "false" @default.
- W4387079783 workType "article" @default.