Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387079863> ?p ?o ?g. }
- W4387079863 endingPage "126843" @default.
- W4387079863 startingPage "126843" @default.
- W4387079863 abstract "Image classification, which is a fundamental element of Computer Vision (CV) and Artificial Intelligence (AI), has been researched intensively in numerous domains and embedded in many products. However, with the exponential increase in the number of images and the complexity of the required tasks, deep-learning classification algorithms demand more intensive resources and computational power to train the models and update the massive number of parameters. Quantum computing is a new research technology with a promising capability of exponential speed up and operational parallelization with its unique phenomena including superposition and entanglement. Researchers have already started utilizing Quantum Deep Learning (QDL) and Quantum Machine Learning (QML) in image classification. Yet, to our knowledge, there exists no comprehensive published literature review on quantum image classification. Therefore, this paper analyzes the advances in this field by dividing the studies based on a unique taxonomy, discussing the limitations, summarizing essential aspects of each research, and finally, emphasizing the gaps, challenges, and recommendations. One of the key challenges presented in the paper is that quantum computers are in the Noisy Intermediate-Scale Quantum (NISQ) era, where they contain a limited number of noisy qubits, therefore challenging complex quantum classifiers and complex images from advanced datasets. This research recommends constructing a novel quantum image encoding method that adapts to the available number of qubits and enables RGB images as a critical contribution to the existing research." @default.
- W4387079863 created "2023-09-28" @default.
- W4387079863 creator A5033623398 @default.
- W4387079863 creator A5042805664 @default.
- W4387079863 creator A5075275226 @default.
- W4387079863 date "2023-12-01" @default.
- W4387079863 modified "2023-10-09" @default.
- W4387079863 title "Advances in Quantum Machine Learning and deep learning for image classification: A survey" @default.
- W4387079863 cites W1529944915 @default.
- W4387079863 cites W1976879565 @default.
- W4387079863 cites W2007339694 @default.
- W4387079863 cites W2020065704 @default.
- W4387079863 cites W2046761109 @default.
- W4387079863 cites W2117853853 @default.
- W4387079863 cites W2135674775 @default.
- W4387079863 cites W2195333992 @default.
- W4387079863 cites W2622826443 @default.
- W4387079863 cites W2749353276 @default.
- W4387079863 cites W2790388700 @default.
- W4387079863 cites W2884367402 @default.
- W4387079863 cites W2887925010 @default.
- W4387079863 cites W2896712926 @default.
- W4387079863 cites W2943027572 @default.
- W4387079863 cites W2996182391 @default.
- W4387079863 cites W3003257958 @default.
- W4387079863 cites W3004252283 @default.
- W4387079863 cites W3007475506 @default.
- W4387079863 cites W3098662938 @default.
- W4387079863 cites W3099321628 @default.
- W4387079863 cites W3099497510 @default.
- W4387079863 cites W3101122608 @default.
- W4387079863 cites W3104599990 @default.
- W4387079863 cites W3137101227 @default.
- W4387079863 cites W3158909818 @default.
- W4387079863 cites W3159416731 @default.
- W4387079863 cites W3179067837 @default.
- W4387079863 cites W3192227636 @default.
- W4387079863 cites W3201342863 @default.
- W4387079863 cites W3202026504 @default.
- W4387079863 cites W3207510357 @default.
- W4387079863 cites W3212191990 @default.
- W4387079863 cites W4200618837 @default.
- W4387079863 cites W4206419394 @default.
- W4387079863 cites W4206999217 @default.
- W4387079863 cites W4212855986 @default.
- W4387079863 cites W4214727889 @default.
- W4387079863 cites W4281692726 @default.
- W4387079863 cites W4282596355 @default.
- W4387079863 cites W4285018467 @default.
- W4387079863 cites W4285265533 @default.
- W4387079863 cites W4288051764 @default.
- W4387079863 cites W4288785604 @default.
- W4387079863 cites W4289596393 @default.
- W4387079863 cites W4289884297 @default.
- W4387079863 cites W4291711130 @default.
- W4387079863 cites W4303083877 @default.
- W4387079863 cites W4327743729 @default.
- W4387079863 doi "https://doi.org/10.1016/j.neucom.2023.126843" @default.
- W4387079863 hasPublicationYear "2023" @default.
- W4387079863 type Work @default.
- W4387079863 citedByCount "0" @default.
- W4387079863 crossrefType "journal-article" @default.
- W4387079863 hasAuthorship W4387079863A5033623398 @default.
- W4387079863 hasAuthorship W4387079863A5042805664 @default.
- W4387079863 hasAuthorship W4387079863A5075275226 @default.
- W4387079863 hasConcept C108583219 @default.
- W4387079863 hasConcept C115961682 @default.
- W4387079863 hasConcept C119857082 @default.
- W4387079863 hasConcept C121040770 @default.
- W4387079863 hasConcept C121332964 @default.
- W4387079863 hasConcept C154945302 @default.
- W4387079863 hasConcept C202444582 @default.
- W4387079863 hasConcept C203087015 @default.
- W4387079863 hasConcept C2779094486 @default.
- W4387079863 hasConcept C33923547 @default.
- W4387079863 hasConcept C41008148 @default.
- W4387079863 hasConcept C58053490 @default.
- W4387079863 hasConcept C62520636 @default.
- W4387079863 hasConcept C75294576 @default.
- W4387079863 hasConcept C80444323 @default.
- W4387079863 hasConcept C84114770 @default.
- W4387079863 hasConcept C9652623 @default.
- W4387079863 hasConceptScore W4387079863C108583219 @default.
- W4387079863 hasConceptScore W4387079863C115961682 @default.
- W4387079863 hasConceptScore W4387079863C119857082 @default.
- W4387079863 hasConceptScore W4387079863C121040770 @default.
- W4387079863 hasConceptScore W4387079863C121332964 @default.
- W4387079863 hasConceptScore W4387079863C154945302 @default.
- W4387079863 hasConceptScore W4387079863C202444582 @default.
- W4387079863 hasConceptScore W4387079863C203087015 @default.
- W4387079863 hasConceptScore W4387079863C2779094486 @default.
- W4387079863 hasConceptScore W4387079863C33923547 @default.
- W4387079863 hasConceptScore W4387079863C41008148 @default.
- W4387079863 hasConceptScore W4387079863C58053490 @default.
- W4387079863 hasConceptScore W4387079863C62520636 @default.
- W4387079863 hasConceptScore W4387079863C75294576 @default.
- W4387079863 hasConceptScore W4387079863C80444323 @default.
- W4387079863 hasConceptScore W4387079863C84114770 @default.