Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387083531> ?p ?o ?g. }
- W4387083531 endingPage "102639" @default.
- W4387083531 startingPage "102639" @default.
- W4387083531 abstract "The complexity and diversity of scenarios, along with the presence of environmental noise in factory settings, pose significant challenges to the implementation of deep learning-based vision-guided robots for smart manufacturing. In response to these challenges, we introduce a novel Semi-Supervised Knowledge Distillation (SSKD) framework that has been extensively validated and deployed across numerous real-world production lines. The proposed SSKD framework combines the advantages of semi-supervised learning and knowledge distillation to offer optimization for the majority of deep learning models. Experiments conducted in real-world factory settings demonstrate that the SSKD framework significantly enhances the performance of deep learning models, reducing inference time from 185 ms to 45 ms and improving generalizability across different working environments, achieving recall and precision values that exceed 99.5% and 92.6%, respectively, achieved a remarkable 200% improvement in labor efficiency. Our innovative SSKD framework provides a reliable and scalable solution for enhancing manufacturing productivity and product quality. The success of this approach in transforming vision-guided robotic systems for smart manufacturing highlights its potential for broader industry adoption. The SSKD framework offers a reliable and scalable solution for enhancing manufacturing productivity and product quality. Our results underscore the potential of this innovative approach to transform vision-guided robot systems in smart manufacturing, making it an attractive candidate for widespread adoption in the industry. We are proud to report that, as of the end of 2022, the SSKD framework has been successfully implemented in 50 robots – a more than ten-fold increase from the initial 4 in 2020 – resulting in an annual yarn production capacity exceeding 100,000 kg. This accomplishment underscores the practical impact and effectiveness of the SSKD framework in real-world production lines." @default.
- W4387083531 created "2023-09-28" @default.
- W4387083531 creator A5000082492 @default.
- W4387083531 creator A5006923150 @default.
- W4387083531 creator A5021675906 @default.
- W4387083531 creator A5021847243 @default.
- W4387083531 creator A5023965786 @default.
- W4387083531 creator A5040634935 @default.
- W4387083531 creator A5047033489 @default.
- W4387083531 creator A5072833759 @default.
- W4387083531 date "2024-04-01" @default.
- W4387083531 modified "2023-10-16" @default.
- W4387083531 title "Toward generalizable robot vision guidance in real-world operational manufacturing factories: A Semi-Supervised Knowledge Distillation approach" @default.
- W4387083531 cites W149023494 @default.
- W4387083531 cites W1536680647 @default.
- W4387083531 cites W1677409904 @default.
- W4387083531 cites W1987545074 @default.
- W4387083531 cites W2057479631 @default.
- W4387083531 cites W2102605133 @default.
- W4387083531 cites W2151103935 @default.
- W4387083531 cites W2168158762 @default.
- W4387083531 cites W2214409633 @default.
- W4387083531 cites W2269216170 @default.
- W4387083531 cites W2297703974 @default.
- W4387083531 cites W2360714575 @default.
- W4387083531 cites W2539081130 @default.
- W4387083531 cites W2584009249 @default.
- W4387083531 cites W2739879705 @default.
- W4387083531 cites W2781645487 @default.
- W4387083531 cites W2807154909 @default.
- W4387083531 cites W2893351918 @default.
- W4387083531 cites W2911525783 @default.
- W4387083531 cites W2921816907 @default.
- W4387083531 cites W2946370926 @default.
- W4387083531 cites W2954996726 @default.
- W4387083531 cites W2963037989 @default.
- W4387083531 cites W2963118547 @default.
- W4387083531 cites W2963140444 @default.
- W4387083531 cites W2963857746 @default.
- W4387083531 cites W2964912739 @default.
- W4387083531 cites W2966341653 @default.
- W4387083531 cites W2982593143 @default.
- W4387083531 cites W3013015374 @default.
- W4387083531 cites W3016143848 @default.
- W4387083531 cites W3034368386 @default.
- W4387083531 cites W3035160371 @default.
- W4387083531 cites W3047026237 @default.
- W4387083531 cites W3081523786 @default.
- W4387083531 cites W3095111674 @default.
- W4387083531 cites W3106250896 @default.
- W4387083531 cites W3133874538 @default.
- W4387083531 cites W3145758608 @default.
- W4387083531 cites W3148908072 @default.
- W4387083531 cites W3173270634 @default.
- W4387083531 cites W3199778150 @default.
- W4387083531 cites W3201484345 @default.
- W4387083531 cites W3204409915 @default.
- W4387083531 cites W3210997334 @default.
- W4387083531 cites W4205477496 @default.
- W4387083531 cites W4229063534 @default.
- W4387083531 cites W4280581965 @default.
- W4387083531 cites W4290785274 @default.
- W4387083531 cites W4295934680 @default.
- W4387083531 cites W4297042371 @default.
- W4387083531 cites W4297786878 @default.
- W4387083531 cites W4304693993 @default.
- W4387083531 cites W4306408662 @default.
- W4387083531 cites W4310791447 @default.
- W4387083531 cites W4313141028 @default.
- W4387083531 cites W4362589359 @default.
- W4387083531 cites W639708223 @default.
- W4387083531 doi "https://doi.org/10.1016/j.rcim.2023.102639" @default.
- W4387083531 hasPublicationYear "2024" @default.
- W4387083531 type Work @default.
- W4387083531 citedByCount "0" @default.
- W4387083531 crossrefType "journal-article" @default.
- W4387083531 hasAuthorship W4387083531A5000082492 @default.
- W4387083531 hasAuthorship W4387083531A5006923150 @default.
- W4387083531 hasAuthorship W4387083531A5021675906 @default.
- W4387083531 hasAuthorship W4387083531A5021847243 @default.
- W4387083531 hasAuthorship W4387083531A5023965786 @default.
- W4387083531 hasAuthorship W4387083531A5040634935 @default.
- W4387083531 hasAuthorship W4387083531A5047033489 @default.
- W4387083531 hasAuthorship W4387083531A5072833759 @default.
- W4387083531 hasConcept C111472728 @default.
- W4387083531 hasConcept C117671659 @default.
- W4387083531 hasConcept C119857082 @default.
- W4387083531 hasConcept C127413603 @default.
- W4387083531 hasConcept C13736549 @default.
- W4387083531 hasConcept C138885662 @default.
- W4387083531 hasConcept C139719470 @default.
- W4387083531 hasConcept C154945302 @default.
- W4387083531 hasConcept C162324750 @default.
- W4387083531 hasConcept C175700187 @default.
- W4387083531 hasConcept C17744445 @default.
- W4387083531 hasConcept C199360897 @default.
- W4387083531 hasConcept C199539241 @default.
- W4387083531 hasConcept C204983608 @default.