Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387089107> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4387089107 abstract "In the temperature detection of a three-phase Community Gas Insulated Bus Bar (GIB), the spatial distribution relationship between the measuring point of the housing temperature and the internal three-phase contact is not clear, and the time lag between the housing temperature and the internal contact temperature is strong. This paper constructs CNN based on convolutional neural network (CNN) and long short-term neural network (LSTM) structures. Prediction of the transient temperature of the internal contact by CNN-LSTM. First, the physical simulation experiment of the temperature rise of the three-phase common body GIB shell was carried out, and the temperature data of the three-phase common body GIB shell and contacts under different test currents were obtained; then, the convolutional neural network was used to extract the time of each temperature measurement point Features; After that, the long and short-term memory neural network is used to capture the spatial features between different measuring points; finally, the transient temperature prediction value of the GIB internal contact of the three-phase common body is output through the fully connected layer (FC). The results show that the multi-step prediction accuracy of the CNN- LSTM model on the test set can reach more than 94%, which is better than prediction algorithms such as MLP, LSTM, and CNN. The model can be provided as a new method and reference for GIB overheat monitoring." @default.
- W4387089107 created "2023-09-28" @default.
- W4387089107 creator A5019815954 @default.
- W4387089107 creator A5022167669 @default.
- W4387089107 creator A5060855400 @default.
- W4387089107 creator A5074234718 @default.
- W4387089107 date "2023-08-11" @default.
- W4387089107 modified "2023-09-28" @default.
- W4387089107 title "Transient Temperature Prediction of Three-Phase Gas Insulated Busbar Contacts Based on CNN-LSTM" @default.
- W4387089107 cites W2995720135 @default.
- W4387089107 cites W3011993325 @default.
- W4387089107 cites W3113302101 @default.
- W4387089107 cites W3125381306 @default.
- W4387089107 cites W4240140895 @default.
- W4387089107 doi "https://doi.org/10.1109/icipca59209.2023.10257674" @default.
- W4387089107 hasPublicationYear "2023" @default.
- W4387089107 type Work @default.
- W4387089107 citedByCount "0" @default.
- W4387089107 crossrefType "proceedings-article" @default.
- W4387089107 hasAuthorship W4387089107A5019815954 @default.
- W4387089107 hasAuthorship W4387089107A5022167669 @default.
- W4387089107 hasAuthorship W4387089107A5060855400 @default.
- W4387089107 hasAuthorship W4387089107A5074234718 @default.
- W4387089107 hasConcept C111919701 @default.
- W4387089107 hasConcept C119599485 @default.
- W4387089107 hasConcept C121332964 @default.
- W4387089107 hasConcept C127413603 @default.
- W4387089107 hasConcept C153180895 @default.
- W4387089107 hasConcept C153294291 @default.
- W4387089107 hasConcept C154945302 @default.
- W4387089107 hasConcept C188721877 @default.
- W4387089107 hasConcept C192690417 @default.
- W4387089107 hasConcept C2780799671 @default.
- W4387089107 hasConcept C41008148 @default.
- W4387089107 hasConcept C44280652 @default.
- W4387089107 hasConcept C50644808 @default.
- W4387089107 hasConcept C62520636 @default.
- W4387089107 hasConcept C72293138 @default.
- W4387089107 hasConcept C81363708 @default.
- W4387089107 hasConceptScore W4387089107C111919701 @default.
- W4387089107 hasConceptScore W4387089107C119599485 @default.
- W4387089107 hasConceptScore W4387089107C121332964 @default.
- W4387089107 hasConceptScore W4387089107C127413603 @default.
- W4387089107 hasConceptScore W4387089107C153180895 @default.
- W4387089107 hasConceptScore W4387089107C153294291 @default.
- W4387089107 hasConceptScore W4387089107C154945302 @default.
- W4387089107 hasConceptScore W4387089107C188721877 @default.
- W4387089107 hasConceptScore W4387089107C192690417 @default.
- W4387089107 hasConceptScore W4387089107C2780799671 @default.
- W4387089107 hasConceptScore W4387089107C41008148 @default.
- W4387089107 hasConceptScore W4387089107C44280652 @default.
- W4387089107 hasConceptScore W4387089107C50644808 @default.
- W4387089107 hasConceptScore W4387089107C62520636 @default.
- W4387089107 hasConceptScore W4387089107C72293138 @default.
- W4387089107 hasConceptScore W4387089107C81363708 @default.
- W4387089107 hasLocation W43870891071 @default.
- W4387089107 hasOpenAccess W4387089107 @default.
- W4387089107 hasPrimaryLocation W43870891071 @default.
- W4387089107 hasRelatedWork W1605989338 @default.
- W4387089107 hasRelatedWork W1963849065 @default.
- W4387089107 hasRelatedWork W2356697893 @default.
- W4387089107 hasRelatedWork W2521062615 @default.
- W4387089107 hasRelatedWork W2767651786 @default.
- W4387089107 hasRelatedWork W2912288872 @default.
- W4387089107 hasRelatedWork W2916569990 @default.
- W4387089107 hasRelatedWork W3016958897 @default.
- W4387089107 hasRelatedWork W3181746755 @default.
- W4387089107 hasRelatedWork W944731183 @default.
- W4387089107 isParatext "false" @default.
- W4387089107 isRetracted "false" @default.
- W4387089107 workType "article" @default.