Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387095077> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4387095077 endingPage "107179" @default.
- W4387095077 startingPage "107179" @default.
- W4387095077 abstract "Domain adaptation (DA) approaches have been extensively applied to the diagnosis of rotating machinery faults under different working conditions. However, most DA-based methods perform poorly in practical situations since they generally only consider the global distribution or subdomain distribution of the source and target domains. Thus, we propose a novel Deep Convolution Multi-Adversarial adaptation network with Correlation Alignment (DCMACA). DCMACA consists of an improved deep convolutional feature extractor, a domain adaptation module, and a label classifier. The improved deep convolutional feature extractor comprises ordinary convolutional layers, depthwise convolution layers, Squeeze and Excitation modules, skip connection operations, an average pooling layer, and a fully connected layer. The domain adaptation module introduces multiple domain discriminators and Coral distance to align the subdomain distribution and global distribution of features extracted by the feature extractor, respectively. The softmax function is employed as the label classifier. Based on DCMACA, we presented a new approach for identifying faults in rotating machinery under different operating conditions. First, the original vibration signals are converted into the time-frequency maps of size 64 × 64 via the continuous wavelet transform and bilinear interpolation technologies. Subsequently, the time-frequency maps are input to DCMACA to complete the extraction of transferable features and fault identification. The proposed DCMACA fault identification approach was evaluated through two experiments, where it achieved an average accuracy of 98.84% in 18 migration diagnostic tasks. The comprehensive results reveal that the presented approach can realize higher diagnostic accuracies, robustness, and superior generalization capability compared to the existing mainstream DA approaches." @default.
- W4387095077 created "2023-09-28" @default.
- W4387095077 creator A5006956791 @default.
- W4387095077 creator A5039774761 @default.
- W4387095077 creator A5045637670 @default.
- W4387095077 creator A5054013683 @default.
- W4387095077 creator A5065117421 @default.
- W4387095077 date "2023-11-01" @default.
- W4387095077 modified "2023-09-28" @default.
- W4387095077 title "A Deep Convolution Multi-Adversarial adaptation network with Correlation Alignment for fault diagnosis of rotating machinery under different working conditions" @default.
- W4387095077 cites W2734247965 @default.
- W4387095077 cites W2744790985 @default.
- W4387095077 cites W2768753204 @default.
- W4387095077 cites W2786808285 @default.
- W4387095077 cites W2794760173 @default.
- W4387095077 cites W2794869810 @default.
- W4387095077 cites W2803165512 @default.
- W4387095077 cites W2810292802 @default.
- W4387095077 cites W2886506350 @default.
- W4387095077 cites W2892709813 @default.
- W4387095077 cites W2903917280 @default.
- W4387095077 cites W2904218127 @default.
- W4387095077 cites W2905166565 @default.
- W4387095077 cites W2907541186 @default.
- W4387095077 cites W2911725274 @default.
- W4387095077 cites W2912073957 @default.
- W4387095077 cites W2933589034 @default.
- W4387095077 cites W2946208493 @default.
- W4387095077 cites W2999414995 @default.
- W4387095077 cites W3001599259 @default.
- W4387095077 cites W3014644090 @default.
- W4387095077 cites W3020432805 @default.
- W4387095077 cites W3021632667 @default.
- W4387095077 cites W3082542612 @default.
- W4387095077 cites W3090682168 @default.
- W4387095077 cites W3146740292 @default.
- W4387095077 cites W3157039246 @default.
- W4387095077 cites W3158191900 @default.
- W4387095077 cites W3160411383 @default.
- W4387095077 cites W3192024931 @default.
- W4387095077 cites W3193425575 @default.
- W4387095077 cites W3204767606 @default.
- W4387095077 cites W4200114993 @default.
- W4387095077 cites W4200435622 @default.
- W4387095077 cites W4280501376 @default.
- W4387095077 cites W4284964772 @default.
- W4387095077 cites W4292260879 @default.
- W4387095077 cites W4375854801 @default.
- W4387095077 cites W4382863474 @default.
- W4387095077 doi "https://doi.org/10.1016/j.engappai.2023.107179" @default.
- W4387095077 hasPublicationYear "2023" @default.
- W4387095077 type Work @default.
- W4387095077 citedByCount "0" @default.
- W4387095077 crossrefType "journal-article" @default.
- W4387095077 hasAuthorship W4387095077A5006956791 @default.
- W4387095077 hasAuthorship W4387095077A5039774761 @default.
- W4387095077 hasAuthorship W4387095077A5045637670 @default.
- W4387095077 hasAuthorship W4387095077A5054013683 @default.
- W4387095077 hasAuthorship W4387095077A5065117421 @default.
- W4387095077 hasConcept C108583219 @default.
- W4387095077 hasConcept C11413529 @default.
- W4387095077 hasConcept C153180895 @default.
- W4387095077 hasConcept C154945302 @default.
- W4387095077 hasConcept C188441871 @default.
- W4387095077 hasConcept C41008148 @default.
- W4387095077 hasConcept C45347329 @default.
- W4387095077 hasConcept C50644808 @default.
- W4387095077 hasConcept C52622490 @default.
- W4387095077 hasConcept C81363708 @default.
- W4387095077 hasConcept C95623464 @default.
- W4387095077 hasConceptScore W4387095077C108583219 @default.
- W4387095077 hasConceptScore W4387095077C11413529 @default.
- W4387095077 hasConceptScore W4387095077C153180895 @default.
- W4387095077 hasConceptScore W4387095077C154945302 @default.
- W4387095077 hasConceptScore W4387095077C188441871 @default.
- W4387095077 hasConceptScore W4387095077C41008148 @default.
- W4387095077 hasConceptScore W4387095077C45347329 @default.
- W4387095077 hasConceptScore W4387095077C50644808 @default.
- W4387095077 hasConceptScore W4387095077C52622490 @default.
- W4387095077 hasConceptScore W4387095077C81363708 @default.
- W4387095077 hasConceptScore W4387095077C95623464 @default.
- W4387095077 hasLocation W43870950771 @default.
- W4387095077 hasOpenAccess W4387095077 @default.
- W4387095077 hasPrimaryLocation W43870950771 @default.
- W4387095077 hasRelatedWork W2279398222 @default.
- W4387095077 hasRelatedWork W2771515600 @default.
- W4387095077 hasRelatedWork W2807311372 @default.
- W4387095077 hasRelatedWork W2913997398 @default.
- W4387095077 hasRelatedWork W2977314777 @default.
- W4387095077 hasRelatedWork W3156786002 @default.
- W4387095077 hasRelatedWork W4299822940 @default.
- W4387095077 hasRelatedWork W4312417841 @default.
- W4387095077 hasRelatedWork W4321369474 @default.
- W4387095077 hasRelatedWork W4366492315 @default.
- W4387095077 hasVolume "126" @default.
- W4387095077 isParatext "false" @default.
- W4387095077 isRetracted "false" @default.
- W4387095077 workType "article" @default.