Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387095596> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4387095596 endingPage "107847" @default.
- W4387095596 startingPage "107847" @default.
- W4387095596 abstract "Accurate prediction of energy consumption is pivotal to achieving sustainable building energy objectives, and Deep Reinforcement Learning (DRL) has demonstrated efficacy in this regard. Nevertheless, efficient model training within DRL remains challenging for practitioners due to the need for expertise in Reinforcement Learning (RL) and parameter tuning. Moreover, the invisible mechanism of DRL models raises doubts among users, impeding subsequent tasks. To address these challenges, a visual analytics system named DDPGVis is proposed in this work, which focuses on exploring the experience data generated by Deep Deterministic Policy Gradient (DDPG) models used for energy consumption prediction. Specifically, temporal aggregation of steps is employed to heighten the efficiency of subsequent analysis. Feature importance analysis and dimensionality reduction of state data are utilized to help users understand the high-dimensional environment space. Simultaneously, experience data is subjected to spatio-temporal modeling, yielding dynamic network diagrams, which are utilized to analyze the experience correlations. Except for showcasing the statistics and results from the analysis of state and experience data, DDPGVis also provides a recommendation view for assisting users in parameter tuning. In corporation with three non-reinforcement learning experts, case studies demonstrate that DDPGVis can help users understand the model training process, diagnose model anomalies, and optimize the model efficiency. Compared to the parameters initially set by the same expert for energy consumption prediction, DDPGVis can recommend a better configuration that contributes to a reduction of MAE, MAPE, and RMSE by 41%, 55.62%, and 28.03%, respectively, and an increase of R2 by 7.42%." @default.
- W4387095596 created "2023-09-28" @default.
- W4387095596 creator A5015709912 @default.
- W4387095596 creator A5039740503 @default.
- W4387095596 creator A5043897719 @default.
- W4387095596 creator A5049829974 @default.
- W4387095596 creator A5087429872 @default.
- W4387095596 date "2023-11-01" @default.
- W4387095596 modified "2023-10-03" @default.
- W4387095596 title "Visual interpretation of deep deterministic policy gradient models for energy consumption prediction" @default.
- W4387095596 cites W2947475527 @default.
- W4387095596 cites W2952500855 @default.
- W4387095596 cites W2972238369 @default.
- W4387095596 cites W2994209110 @default.
- W4387095596 cites W3024436929 @default.
- W4387095596 cites W3048804154 @default.
- W4387095596 cites W3126453252 @default.
- W4387095596 cites W3133514897 @default.
- W4387095596 cites W3147267216 @default.
- W4387095596 cites W3159115097 @default.
- W4387095596 cites W3159394994 @default.
- W4387095596 cites W3163789885 @default.
- W4387095596 cites W3199527758 @default.
- W4387095596 cites W4210264370 @default.
- W4387095596 cites W4292548546 @default.
- W4387095596 cites W4292844652 @default.
- W4387095596 cites W4298151956 @default.
- W4387095596 cites W4308326656 @default.
- W4387095596 cites W4313362597 @default.
- W4387095596 cites W4319600938 @default.
- W4387095596 cites W4365448055 @default.
- W4387095596 cites W4378979205 @default.
- W4387095596 cites W4385323777 @default.
- W4387095596 doi "https://doi.org/10.1016/j.jobe.2023.107847" @default.
- W4387095596 hasPublicationYear "2023" @default.
- W4387095596 type Work @default.
- W4387095596 citedByCount "0" @default.
- W4387095596 crossrefType "journal-article" @default.
- W4387095596 hasAuthorship W4387095596A5015709912 @default.
- W4387095596 hasAuthorship W4387095596A5039740503 @default.
- W4387095596 hasAuthorship W4387095596A5043897719 @default.
- W4387095596 hasAuthorship W4387095596A5049829974 @default.
- W4387095596 hasAuthorship W4387095596A5087429872 @default.
- W4387095596 hasConcept C111030470 @default.
- W4387095596 hasConcept C111919701 @default.
- W4387095596 hasConcept C119599485 @default.
- W4387095596 hasConcept C119857082 @default.
- W4387095596 hasConcept C124101348 @default.
- W4387095596 hasConcept C127413603 @default.
- W4387095596 hasConcept C154945302 @default.
- W4387095596 hasConcept C177264268 @default.
- W4387095596 hasConcept C199360897 @default.
- W4387095596 hasConcept C2780165032 @default.
- W4387095596 hasConcept C41008148 @default.
- W4387095596 hasConcept C45804977 @default.
- W4387095596 hasConcept C70518039 @default.
- W4387095596 hasConcept C97541855 @default.
- W4387095596 hasConcept C98045186 @default.
- W4387095596 hasConceptScore W4387095596C111030470 @default.
- W4387095596 hasConceptScore W4387095596C111919701 @default.
- W4387095596 hasConceptScore W4387095596C119599485 @default.
- W4387095596 hasConceptScore W4387095596C119857082 @default.
- W4387095596 hasConceptScore W4387095596C124101348 @default.
- W4387095596 hasConceptScore W4387095596C127413603 @default.
- W4387095596 hasConceptScore W4387095596C154945302 @default.
- W4387095596 hasConceptScore W4387095596C177264268 @default.
- W4387095596 hasConceptScore W4387095596C199360897 @default.
- W4387095596 hasConceptScore W4387095596C2780165032 @default.
- W4387095596 hasConceptScore W4387095596C41008148 @default.
- W4387095596 hasConceptScore W4387095596C45804977 @default.
- W4387095596 hasConceptScore W4387095596C70518039 @default.
- W4387095596 hasConceptScore W4387095596C97541855 @default.
- W4387095596 hasConceptScore W4387095596C98045186 @default.
- W4387095596 hasFunder F4320321001 @default.
- W4387095596 hasLocation W43870955961 @default.
- W4387095596 hasOpenAccess W4387095596 @default.
- W4387095596 hasPrimaryLocation W43870955961 @default.
- W4387095596 hasRelatedWork W2016773334 @default.
- W4387095596 hasRelatedWork W2184043162 @default.
- W4387095596 hasRelatedWork W256302689 @default.
- W4387095596 hasRelatedWork W2767021621 @default.
- W4387095596 hasRelatedWork W3022704604 @default.
- W4387095596 hasRelatedWork W3123566319 @default.
- W4387095596 hasRelatedWork W3160244858 @default.
- W4387095596 hasRelatedWork W4319083788 @default.
- W4387095596 hasRelatedWork W4323021563 @default.
- W4387095596 hasRelatedWork W4323546569 @default.
- W4387095596 hasVolume "79" @default.
- W4387095596 isParatext "false" @default.
- W4387095596 isRetracted "false" @default.
- W4387095596 workType "article" @default.