Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387100013> ?p ?o ?g. }
- W4387100013 abstract "Abstract Post-traumatic stress disorder (PTSD) is frequently underdiagnosed due to its clinical and biological heterogeneity. Worldwide, many people face barriers to accessing accurate and timely diagnoses. Machine learning (ML) techniques have been utilized for early assessments and outcome prediction to address these challenges. This paper aims to conduct a systematic review to investigate if ML is a promising approach for PTSD diagnosis. In this review, statistical methods were employed to synthesize the outcomes of the included research and provide guidance on critical considerations for ML task implementation. These included (a) selection of the most appropriate ML model for the available dataset, (b) identification of optimal ML features based on the chosen diagnostic method, (c) determination of appropriate sample size based on the distribution of the data, and (d) implementation of suitable validation tools to assess the performance of the selected ML models. We screened 3186 studies and included 41 articles based on eligibility criteria in the final synthesis. Here we report that the analysis of the included studies highlights the potential of artificial intelligence (AI) in PTSD diagnosis. However, implementing AI-based diagnostic systems in real clinical settings requires addressing several limitations, including appropriate regulation, ethical considerations, and protection of patient privacy." @default.
- W4387100013 created "2023-09-28" @default.
- W4387100013 creator A5021241580 @default.
- W4387100013 creator A5059239838 @default.
- W4387100013 creator A5074232124 @default.
- W4387100013 creator A5085004206 @default.
- W4387100013 creator A5089942580 @default.
- W4387100013 date "2023-09-27" @default.
- W4387100013 modified "2023-10-17" @default.
- W4387100013 title "Systematic review of machine learning in PTSD studies for automated diagnosis evaluation" @default.
- W4387100013 cites W1528741131 @default.
- W4387100013 cites W1569321962 @default.
- W4387100013 cites W1635512741 @default.
- W4387100013 cites W1678356000 @default.
- W4387100013 cites W1995341919 @default.
- W4387100013 cites W2012932483 @default.
- W4387100013 cites W2064675550 @default.
- W4387100013 cites W2077086070 @default.
- W4387100013 cites W2094537645 @default.
- W4387100013 cites W2101568283 @default.
- W4387100013 cites W2137565796 @default.
- W4387100013 cites W2140503291 @default.
- W4387100013 cites W2148143831 @default.
- W4387100013 cites W2155023794 @default.
- W4387100013 cites W2157394212 @default.
- W4387100013 cites W2256650080 @default.
- W4387100013 cites W2264580330 @default.
- W4387100013 cites W2330219538 @default.
- W4387100013 cites W2462695187 @default.
- W4387100013 cites W2608383286 @default.
- W4387100013 cites W2796886891 @default.
- W4387100013 cites W2897587989 @default.
- W4387100013 cites W2911964244 @default.
- W4387100013 cites W2915848625 @default.
- W4387100013 cites W2942406304 @default.
- W4387100013 cites W2963389298 @default.
- W4387100013 cites W2969522137 @default.
- W4387100013 cites W2971419801 @default.
- W4387100013 cites W2972984907 @default.
- W4387100013 cites W2981619156 @default.
- W4387100013 cites W2989219518 @default.
- W4387100013 cites W2993242472 @default.
- W4387100013 cites W2998445959 @default.
- W4387100013 cites W3014525701 @default.
- W4387100013 cites W3021548101 @default.
- W4387100013 cites W3023669192 @default.
- W4387100013 cites W3047024470 @default.
- W4387100013 cites W3080901867 @default.
- W4387100013 cites W3162032117 @default.
- W4387100013 cites W3183340886 @default.
- W4387100013 cites W3192949509 @default.
- W4387100013 cites W3196142795 @default.
- W4387100013 cites W3198350258 @default.
- W4387100013 cites W3208924432 @default.
- W4387100013 cites W3215349079 @default.
- W4387100013 cites W4200405240 @default.
- W4387100013 cites W4206579634 @default.
- W4387100013 cites W4206669647 @default.
- W4387100013 cites W4210470036 @default.
- W4387100013 cites W4210642337 @default.
- W4387100013 cites W4210830431 @default.
- W4387100013 cites W4214576234 @default.
- W4387100013 cites W4224257950 @default.
- W4387100013 cites W4239510810 @default.
- W4387100013 cites W4239944110 @default.
- W4387100013 cites W4247665917 @default.
- W4387100013 cites W4248606406 @default.
- W4387100013 cites W4285742673 @default.
- W4387100013 cites W4288042164 @default.
- W4387100013 cites W4288739814 @default.
- W4387100013 cites W4292452320 @default.
- W4387100013 cites W4296887757 @default.
- W4387100013 cites W4297470967 @default.
- W4387100013 cites W4310910011 @default.
- W4387100013 doi "https://doi.org/10.1038/s44184-023-00035-w" @default.
- W4387100013 hasPublicationYear "2023" @default.
- W4387100013 type Work @default.
- W4387100013 citedByCount "0" @default.
- W4387100013 crossrefType "journal-article" @default.
- W4387100013 hasAuthorship W4387100013A5021241580 @default.
- W4387100013 hasAuthorship W4387100013A5059239838 @default.
- W4387100013 hasAuthorship W4387100013A5074232124 @default.
- W4387100013 hasAuthorship W4387100013A5085004206 @default.
- W4387100013 hasAuthorship W4387100013A5089942580 @default.
- W4387100013 hasBestOaLocation W43871000131 @default.
- W4387100013 hasConcept C116834253 @default.
- W4387100013 hasConcept C119857082 @default.
- W4387100013 hasConcept C127413603 @default.
- W4387100013 hasConcept C142724271 @default.
- W4387100013 hasConcept C154945302 @default.
- W4387100013 hasConcept C201995342 @default.
- W4387100013 hasConcept C2780451532 @default.
- W4387100013 hasConcept C41008148 @default.
- W4387100013 hasConcept C534262118 @default.
- W4387100013 hasConcept C59822182 @default.
- W4387100013 hasConcept C71924100 @default.
- W4387100013 hasConcept C86803240 @default.
- W4387100013 hasConceptScore W4387100013C116834253 @default.
- W4387100013 hasConceptScore W4387100013C119857082 @default.
- W4387100013 hasConceptScore W4387100013C127413603 @default.