Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387100437> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4387100437 abstract "Along with the Internet, digital technologies are frequently used in every moment of our lives. Many transactions that we carry out in monetary terms such as shopping in our daily life are now done digitally. With the developing digitalization in the world, people's lives become easier and people can access different products in a short time. In particular, people can spend and shop quickly and easily without carrying cash in their pockets with a credit card. However, with the increase in the use of credit cards, there are also some security vulnerabilities. Fraudsters can gain unfair advantage by obtaining certain credit card information such as passwords. They can shop with someone else's credit card without permission. These transactions cause substantial financial damage to individuals and institutions. With the increase in the use of credit cards with the developing technology, such credit card fraud is also increasing rapidly. Taking precautions against credit card fraud is a very important issue in order to ensure the safety of people. For this reason, in order to ensure the security of both banks and financial institutions that provide credit card services, it is necessary to prevent credit card fraud and to detect fraud that may occur in credit cards within the scope of combating fraud. In our study, Artificial Neural Networks were used to detect credit card fraud transactions. A prediction model has been developed to detect fraud in credit card transactions with ANN. Using the Credit Card data set obtained from the Kaggle database, modeling was done with the Feed Forward Artificial Neural Network method. The aim of this study is to automatically detect abnormal behaviors made with credit cards. 98.44% success was achieved with feedforward artificial neural network." @default.
- W4387100437 created "2023-09-28" @default.
- W4387100437 creator A5015015050 @default.
- W4387100437 creator A5039521537 @default.
- W4387100437 creator A5092954043 @default.
- W4387100437 date "2023-08-19" @default.
- W4387100437 modified "2023-10-07" @default.
- W4387100437 title "Detection of Credit Card Fraud with Artificial Neural Networks" @default.
- W4387100437 doi "https://doi.org/10.58190/icat.2023.15" @default.
- W4387100437 hasPublicationYear "2023" @default.
- W4387100437 type Work @default.
- W4387100437 citedByCount "0" @default.
- W4387100437 crossrefType "journal-article" @default.
- W4387100437 hasAuthorship W4387100437A5015015050 @default.
- W4387100437 hasAuthorship W4387100437A5039521537 @default.
- W4387100437 hasAuthorship W4387100437A5092954043 @default.
- W4387100437 hasBestOaLocation W43871004371 @default.
- W4387100437 hasConcept C10138342 @default.
- W4387100437 hasConcept C108087509 @default.
- W4387100437 hasConcept C110875604 @default.
- W4387100437 hasConcept C136764020 @default.
- W4387100437 hasConcept C144133560 @default.
- W4387100437 hasConcept C145097563 @default.
- W4387100437 hasConcept C149071572 @default.
- W4387100437 hasConcept C174957148 @default.
- W4387100437 hasConcept C178350159 @default.
- W4387100437 hasConcept C182306322 @default.
- W4387100437 hasConcept C24308983 @default.
- W4387100437 hasConcept C2780747020 @default.
- W4387100437 hasConcept C2983355114 @default.
- W4387100437 hasConcept C38652104 @default.
- W4387100437 hasConcept C41008148 @default.
- W4387100437 hasConcept C68842666 @default.
- W4387100437 hasConcept C81749938 @default.
- W4387100437 hasConceptScore W4387100437C10138342 @default.
- W4387100437 hasConceptScore W4387100437C108087509 @default.
- W4387100437 hasConceptScore W4387100437C110875604 @default.
- W4387100437 hasConceptScore W4387100437C136764020 @default.
- W4387100437 hasConceptScore W4387100437C144133560 @default.
- W4387100437 hasConceptScore W4387100437C145097563 @default.
- W4387100437 hasConceptScore W4387100437C149071572 @default.
- W4387100437 hasConceptScore W4387100437C174957148 @default.
- W4387100437 hasConceptScore W4387100437C178350159 @default.
- W4387100437 hasConceptScore W4387100437C182306322 @default.
- W4387100437 hasConceptScore W4387100437C24308983 @default.
- W4387100437 hasConceptScore W4387100437C2780747020 @default.
- W4387100437 hasConceptScore W4387100437C2983355114 @default.
- W4387100437 hasConceptScore W4387100437C38652104 @default.
- W4387100437 hasConceptScore W4387100437C41008148 @default.
- W4387100437 hasConceptScore W4387100437C68842666 @default.
- W4387100437 hasConceptScore W4387100437C81749938 @default.
- W4387100437 hasLocation W43871004371 @default.
- W4387100437 hasOpenAccess W4387100437 @default.
- W4387100437 hasPrimaryLocation W43871004371 @default.
- W4387100437 hasRelatedWork W2236305808 @default.
- W4387100437 hasRelatedWork W2379912495 @default.
- W4387100437 hasRelatedWork W2391950365 @default.
- W4387100437 hasRelatedWork W2417787970 @default.
- W4387100437 hasRelatedWork W4225849857 @default.
- W4387100437 hasRelatedWork W4387100437 @default.
- W4387100437 hasRelatedWork W81658929 @default.
- W4387100437 hasRelatedWork W2029604749 @default.
- W4387100437 hasRelatedWork W2188361837 @default.
- W4387100437 hasRelatedWork W2553821921 @default.
- W4387100437 isParatext "false" @default.
- W4387100437 isRetracted "false" @default.
- W4387100437 workType "article" @default.