Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387103104> ?p ?o ?g. }
- W4387103104 endingPage "372" @default.
- W4387103104 startingPage "361" @default.
- W4387103104 abstract "Students’ academic achievement is always a target of concern for educational institutions. Nowadays, the rapid development of digital transformation has resulted in huge amounts of data being generated by Learning Management Systems. The deployment of Educational Data Mining (EDM) is becoming increasingly significant in discovering ways to improve student learning outcomes. Those approaches effectively facilitate dealing with students’ massive amounts of data. The purpose of this review is to evaluate and discuss the state-of-art EDM for predicting students’ learning performance among higher education institutions. A scoping review was conducted on twelve peer-reviewed publications that were indexed in ACM, IEEE Xplore, Science Direct and Scopus between 2012 and 2021. This study comprehensively reviewed the final inclusion literature on EDM in terms of tools, techniques, machine learning algorithms and application schemes. We have found that WEKA (tool) and classification (technique) were chosen in most of the selected studies carried out in their EDM settings. This review suggested that Tree Structured algorithms as supervised learning approaches can better predict students’ learning performance, as it has been validated in several comparative analyses of other algorithms. In the present study, we demonstrate a future trend toward improving the generalizability of prediction models that can deal with a diverse population and the predictive results can be easily interpreted and explained by educators in the general market." @default.
- W4387103104 created "2023-09-28" @default.
- W4387103104 creator A5010428883 @default.
- W4387103104 creator A5019414739 @default.
- W4387103104 creator A5035699822 @default.
- W4387103104 creator A5046132730 @default.
- W4387103104 creator A5057089774 @default.
- W4387103104 creator A5061168726 @default.
- W4387103104 date "2023-01-01" @default.
- W4387103104 modified "2023-09-28" @default.
- W4387103104 title "Educational Data Mining in Prediction of Students’ Learning Performance: A Scoping Review" @default.
- W4387103104 cites W1548739117 @default.
- W4387103104 cites W1631465872 @default.
- W4387103104 cites W2065770942 @default.
- W4387103104 cites W2281833545 @default.
- W4387103104 cites W2327729291 @default.
- W4387103104 cites W2530106549 @default.
- W4387103104 cites W2734482622 @default.
- W4387103104 cites W2753540178 @default.
- W4387103104 cites W2799315307 @default.
- W4387103104 cites W2891378911 @default.
- W4387103104 cites W2894483766 @default.
- W4387103104 cites W2917344953 @default.
- W4387103104 cites W2936260620 @default.
- W4387103104 cites W2943210284 @default.
- W4387103104 cites W2965603386 @default.
- W4387103104 cites W2965853488 @default.
- W4387103104 cites W2984246312 @default.
- W4387103104 cites W2985976496 @default.
- W4387103104 cites W3116398447 @default.
- W4387103104 cites W3131051759 @default.
- W4387103104 cites W3133151839 @default.
- W4387103104 cites W3174518479 @default.
- W4387103104 cites W3206149670 @default.
- W4387103104 cites W4290044378 @default.
- W4387103104 cites W4308206588 @default.
- W4387103104 doi "https://doi.org/10.1007/978-3-031-43393-1_33" @default.
- W4387103104 hasPublicationYear "2023" @default.
- W4387103104 type Work @default.
- W4387103104 citedByCount "0" @default.
- W4387103104 crossrefType "book-chapter" @default.
- W4387103104 hasAuthorship W4387103104A5010428883 @default.
- W4387103104 hasAuthorship W4387103104A5019414739 @default.
- W4387103104 hasAuthorship W4387103104A5035699822 @default.
- W4387103104 hasAuthorship W4387103104A5046132730 @default.
- W4387103104 hasAuthorship W4387103104A5057089774 @default.
- W4387103104 hasAuthorship W4387103104A5061168726 @default.
- W4387103104 hasConcept C105339364 @default.
- W4387103104 hasConcept C105795698 @default.
- W4387103104 hasConcept C109359841 @default.
- W4387103104 hasConcept C115903868 @default.
- W4387103104 hasConcept C119857082 @default.
- W4387103104 hasConcept C124101348 @default.
- W4387103104 hasConcept C154945302 @default.
- W4387103104 hasConcept C15744967 @default.
- W4387103104 hasConcept C17744445 @default.
- W4387103104 hasConcept C199539241 @default.
- W4387103104 hasConcept C2522767166 @default.
- W4387103104 hasConcept C27158222 @default.
- W4387103104 hasConcept C2777598771 @default.
- W4387103104 hasConcept C2779473830 @default.
- W4387103104 hasConcept C33923547 @default.
- W4387103104 hasConcept C41008148 @default.
- W4387103104 hasConcept C77805123 @default.
- W4387103104 hasConcept C83867959 @default.
- W4387103104 hasConcept C89198739 @default.
- W4387103104 hasConceptScore W4387103104C105339364 @default.
- W4387103104 hasConceptScore W4387103104C105795698 @default.
- W4387103104 hasConceptScore W4387103104C109359841 @default.
- W4387103104 hasConceptScore W4387103104C115903868 @default.
- W4387103104 hasConceptScore W4387103104C119857082 @default.
- W4387103104 hasConceptScore W4387103104C124101348 @default.
- W4387103104 hasConceptScore W4387103104C154945302 @default.
- W4387103104 hasConceptScore W4387103104C15744967 @default.
- W4387103104 hasConceptScore W4387103104C17744445 @default.
- W4387103104 hasConceptScore W4387103104C199539241 @default.
- W4387103104 hasConceptScore W4387103104C2522767166 @default.
- W4387103104 hasConceptScore W4387103104C27158222 @default.
- W4387103104 hasConceptScore W4387103104C2777598771 @default.
- W4387103104 hasConceptScore W4387103104C2779473830 @default.
- W4387103104 hasConceptScore W4387103104C33923547 @default.
- W4387103104 hasConceptScore W4387103104C41008148 @default.
- W4387103104 hasConceptScore W4387103104C77805123 @default.
- W4387103104 hasConceptScore W4387103104C83867959 @default.
- W4387103104 hasConceptScore W4387103104C89198739 @default.
- W4387103104 hasLocation W43871031041 @default.
- W4387103104 hasOpenAccess W4387103104 @default.
- W4387103104 hasPrimaryLocation W43871031041 @default.
- W4387103104 hasRelatedWork W2068136625 @default.
- W4387103104 hasRelatedWork W2136866411 @default.
- W4387103104 hasRelatedWork W2608950002 @default.
- W4387103104 hasRelatedWork W2761700447 @default.
- W4387103104 hasRelatedWork W2919612183 @default.
- W4387103104 hasRelatedWork W2955609745 @default.
- W4387103104 hasRelatedWork W3145628117 @default.
- W4387103104 hasRelatedWork W4200511449 @default.
- W4387103104 hasRelatedWork W4210461813 @default.
- W4387103104 hasRelatedWork W4312289002 @default.