Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387103463> ?p ?o ?g. }
- W4387103463 abstract "Familial hypercholesterolemia (FH) is a common hereditary cholesterol metabolic disease that usually leads to an increase in the level of low-density lipoprotein cholesterol in plasma and an increase in the risk of cardiovascular disease. The lack of disease screening and diagnosis often results in FH patients being unable to receive early intervention and treatment, which may mean early occurrence of cardiovascular disease. Thus, more requirements for FH identification and management have been proposed. Recently, machine learning (ML) has made great progress in the field of medicine, including many innovative applications in cardiovascular medicine. In this review, we discussed how ML can be used for FH screening, diagnosis and risk assessment based on different data sources, such as electronic health records, plasma lipid profiles and corneal radian images. In the future, research aimed at developing ML models with better performance and accuracy will continue to overcome the limitations of ML, provide better prediction, diagnosis and management tools for FH, and ultimately achieve the goal of early diagnosis and treatment of FH." @default.
- W4387103463 created "2023-09-28" @default.
- W4387103463 creator A5041690571 @default.
- W4387103463 creator A5042184406 @default.
- W4387103463 creator A5054640484 @default.
- W4387103463 creator A5058053409 @default.
- W4387103463 creator A5071409182 @default.
- W4387103463 creator A5077652515 @default.
- W4387103463 date "2023-09-26" @default.
- W4387103463 modified "2023-10-14" @default.
- W4387103463 title "Applications of machine learning in familial hypercholesterolemia" @default.
- W4387103463 cites W1449361217 @default.
- W4387103463 cites W1966580056 @default.
- W4387103463 cites W1976432291 @default.
- W4387103463 cites W2016805353 @default.
- W4387103463 cites W2018645250 @default.
- W4387103463 cites W2042682570 @default.
- W4387103463 cites W2056748059 @default.
- W4387103463 cites W2101428534 @default.
- W4387103463 cites W2127547407 @default.
- W4387103463 cites W2142627469 @default.
- W4387103463 cites W2165624352 @default.
- W4387103463 cites W2165791625 @default.
- W4387103463 cites W2325583450 @default.
- W4387103463 cites W2576404523 @default.
- W4387103463 cites W2591240813 @default.
- W4387103463 cites W2617110182 @default.
- W4387103463 cites W2894417323 @default.
- W4387103463 cites W2898726746 @default.
- W4387103463 cites W2916559661 @default.
- W4387103463 cites W2922549836 @default.
- W4387103463 cites W2935996710 @default.
- W4387103463 cites W2980761369 @default.
- W4387103463 cites W2980876689 @default.
- W4387103463 cites W3005210932 @default.
- W4387103463 cites W3027417966 @default.
- W4387103463 cites W3094483832 @default.
- W4387103463 cites W3096891674 @default.
- W4387103463 cites W3102220205 @default.
- W4387103463 cites W3118632980 @default.
- W4387103463 cites W3123691613 @default.
- W4387103463 cites W3166161190 @default.
- W4387103463 cites W3173686685 @default.
- W4387103463 cites W3175825316 @default.
- W4387103463 cites W3198898259 @default.
- W4387103463 cites W3200836970 @default.
- W4387103463 cites W3201016655 @default.
- W4387103463 cites W3211326459 @default.
- W4387103463 cites W3216889685 @default.
- W4387103463 cites W4200236046 @default.
- W4387103463 cites W4210272691 @default.
- W4387103463 cites W4210927113 @default.
- W4387103463 cites W4229584934 @default.
- W4387103463 cites W4249898731 @default.
- W4387103463 cites W4283068836 @default.
- W4387103463 cites W4283380057 @default.
- W4387103463 cites W4285719527 @default.
- W4387103463 cites W4288076330 @default.
- W4387103463 cites W4289517155 @default.
- W4387103463 cites W4297218369 @default.
- W4387103463 cites W4311931670 @default.
- W4387103463 cites W4322622443 @default.
- W4387103463 cites W4361298490 @default.
- W4387103463 doi "https://doi.org/10.3389/fcvm.2023.1237258" @default.
- W4387103463 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37823179" @default.
- W4387103463 hasPublicationYear "2023" @default.
- W4387103463 type Work @default.
- W4387103463 citedByCount "0" @default.
- W4387103463 crossrefType "journal-article" @default.
- W4387103463 hasAuthorship W4387103463A5041690571 @default.
- W4387103463 hasAuthorship W4387103463A5042184406 @default.
- W4387103463 hasAuthorship W4387103463A5054640484 @default.
- W4387103463 hasAuthorship W4387103463A5058053409 @default.
- W4387103463 hasAuthorship W4387103463A5071409182 @default.
- W4387103463 hasAuthorship W4387103463A5077652515 @default.
- W4387103463 hasBestOaLocation W43871034631 @default.
- W4387103463 hasConcept C118552586 @default.
- W4387103463 hasConcept C119857082 @default.
- W4387103463 hasConcept C126322002 @default.
- W4387103463 hasConcept C154945302 @default.
- W4387103463 hasConcept C177713679 @default.
- W4387103463 hasConcept C2778163477 @default.
- W4387103463 hasConcept C2779120738 @default.
- W4387103463 hasConcept C2779134260 @default.
- W4387103463 hasConcept C2780665704 @default.
- W4387103463 hasConcept C41008148 @default.
- W4387103463 hasConcept C60644358 @default.
- W4387103463 hasConcept C71924100 @default.
- W4387103463 hasConcept C86803240 @default.
- W4387103463 hasConceptScore W4387103463C118552586 @default.
- W4387103463 hasConceptScore W4387103463C119857082 @default.
- W4387103463 hasConceptScore W4387103463C126322002 @default.
- W4387103463 hasConceptScore W4387103463C154945302 @default.
- W4387103463 hasConceptScore W4387103463C177713679 @default.
- W4387103463 hasConceptScore W4387103463C2778163477 @default.
- W4387103463 hasConceptScore W4387103463C2779120738 @default.
- W4387103463 hasConceptScore W4387103463C2779134260 @default.
- W4387103463 hasConceptScore W4387103463C2780665704 @default.
- W4387103463 hasConceptScore W4387103463C41008148 @default.
- W4387103463 hasConceptScore W4387103463C60644358 @default.