Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387110031> ?p ?o ?g. }
- W4387110031 endingPage "120" @default.
- W4387110031 startingPage "84" @default.
- W4387110031 abstract "Artificial general intelligence (AGI) is the ability of an artificial intelligence (AI) agent to solve somewhat-arbitrary tasks in somewhat-arbitrary environments. Despite being a long-standing goal in the field of AI, achieving AGI remains elusive. In this study, we empirically assessed the generalizability of AI agents by applying a deep reinforcement learning (DRL) approach to the medical domain. Our investigation involved examining how modifying the agent’s structure, task, and environment impacts its generality. Sample: An NIH chest X-ray dataset with 112,120 images and 15 medical conditions. We evaluated the agent’s performance on binary and multiclass classification tasks through a baseline model, a convolutional neural network model, a deep Q network model, and a proximal policy optimization model. Results: Our results suggest that DRL agents with the algorithmic flexibility to autonomously vary their macro/microstructures can generalize better across given tasks and environments." @default.
- W4387110031 created "2023-09-28" @default.
- W4387110031 creator A5047158749 @default.
- W4387110031 creator A5092956157 @default.
- W4387110031 date "2023-01-01" @default.
- W4387110031 modified "2023-09-28" @default.
- W4387110031 title "Toward Artificial General Intelligence: Deep Reinforcement Learning Method to AI in Medicine" @default.
- W4387110031 cites W2017561954 @default.
- W4387110031 cites W2026301027 @default.
- W4387110031 cites W2145339207 @default.
- W4387110031 cites W2528041826 @default.
- W4387110031 cites W2560647685 @default.
- W4387110031 cites W2616747498 @default.
- W4387110031 cites W2777186991 @default.
- W4387110031 cites W2887280559 @default.
- W4387110031 cites W2897240599 @default.
- W4387110031 cites W2898280479 @default.
- W4387110031 cites W2902332709 @default.
- W4387110031 cites W2902907165 @default.
- W4387110031 cites W2905810301 @default.
- W4387110031 cites W2906692346 @default.
- W4387110031 cites W2937888061 @default.
- W4387110031 cites W2943857706 @default.
- W4387110031 cites W2961408814 @default.
- W4387110031 cites W2963305465 @default.
- W4387110031 cites W2966081953 @default.
- W4387110031 cites W2971044152 @default.
- W4387110031 cites W2982316857 @default.
- W4387110031 cites W2986571455 @default.
- W4387110031 cites W2989278094 @default.
- W4387110031 cites W2995482541 @default.
- W4387110031 cites W3011974631 @default.
- W4387110031 cites W3041133507 @default.
- W4387110031 cites W3103559770 @default.
- W4387110031 cites W3106528330 @default.
- W4387110031 cites W3108943181 @default.
- W4387110031 cites W3110608117 @default.
- W4387110031 cites W3118210634 @default.
- W4387110031 cites W3152679009 @default.
- W4387110031 cites W3160033795 @default.
- W4387110031 cites W3177828909 @default.
- W4387110031 cites W3183452672 @default.
- W4387110031 cites W3183475563 @default.
- W4387110031 cites W3212135906 @default.
- W4387110031 cites W4206030306 @default.
- W4387110031 doi "https://doi.org/10.4236/jcc.2023.119006" @default.
- W4387110031 hasPublicationYear "2023" @default.
- W4387110031 type Work @default.
- W4387110031 citedByCount "0" @default.
- W4387110031 crossrefType "journal-article" @default.
- W4387110031 hasAuthorship W4387110031A5047158749 @default.
- W4387110031 hasAuthorship W4387110031A5092956157 @default.
- W4387110031 hasBestOaLocation W43871100311 @default.
- W4387110031 hasConcept C105795698 @default.
- W4387110031 hasConcept C108583219 @default.
- W4387110031 hasConcept C119857082 @default.
- W4387110031 hasConcept C127413603 @default.
- W4387110031 hasConcept C134306372 @default.
- W4387110031 hasConcept C138496976 @default.
- W4387110031 hasConcept C154945302 @default.
- W4387110031 hasConcept C15744967 @default.
- W4387110031 hasConcept C201995342 @default.
- W4387110031 hasConcept C202444582 @default.
- W4387110031 hasConcept C27158222 @default.
- W4387110031 hasConcept C2780451532 @default.
- W4387110031 hasConcept C2780598303 @default.
- W4387110031 hasConcept C2780767217 @default.
- W4387110031 hasConcept C33923547 @default.
- W4387110031 hasConcept C36503486 @default.
- W4387110031 hasConcept C41008148 @default.
- W4387110031 hasConcept C50644808 @default.
- W4387110031 hasConcept C542102704 @default.
- W4387110031 hasConcept C9652623 @default.
- W4387110031 hasConcept C97541855 @default.
- W4387110031 hasConceptScore W4387110031C105795698 @default.
- W4387110031 hasConceptScore W4387110031C108583219 @default.
- W4387110031 hasConceptScore W4387110031C119857082 @default.
- W4387110031 hasConceptScore W4387110031C127413603 @default.
- W4387110031 hasConceptScore W4387110031C134306372 @default.
- W4387110031 hasConceptScore W4387110031C138496976 @default.
- W4387110031 hasConceptScore W4387110031C154945302 @default.
- W4387110031 hasConceptScore W4387110031C15744967 @default.
- W4387110031 hasConceptScore W4387110031C201995342 @default.
- W4387110031 hasConceptScore W4387110031C202444582 @default.
- W4387110031 hasConceptScore W4387110031C27158222 @default.
- W4387110031 hasConceptScore W4387110031C2780451532 @default.
- W4387110031 hasConceptScore W4387110031C2780598303 @default.
- W4387110031 hasConceptScore W4387110031C2780767217 @default.
- W4387110031 hasConceptScore W4387110031C33923547 @default.
- W4387110031 hasConceptScore W4387110031C36503486 @default.
- W4387110031 hasConceptScore W4387110031C41008148 @default.
- W4387110031 hasConceptScore W4387110031C50644808 @default.
- W4387110031 hasConceptScore W4387110031C542102704 @default.
- W4387110031 hasConceptScore W4387110031C9652623 @default.
- W4387110031 hasConceptScore W4387110031C97541855 @default.
- W4387110031 hasIssue "09" @default.
- W4387110031 hasLocation W43871100311 @default.
- W4387110031 hasOpenAccess W4387110031 @default.