Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387113155> ?p ?o ?g. }
- W4387113155 endingPage "108521" @default.
- W4387113155 startingPage "108521" @default.
- W4387113155 abstract "Real-timely monitoring of the crop water status can improve irrigation scheduling to increase water saving and enhance agricultural sustainability, whereas the canopy temperature measured by thermal imaging is an essential indicator for determining the rice water status. The primary goal of this study was to propose a new temperature index based on the temporal variance of the daily temperature and to develop the rice water status estimation model. Two field experiments involving two rice varieties and multi-irrigation regimes were conducted from 2019 to 2020. A thermal imaging camera was used to measure the canopy temperature from 8:00–16:00 at 2-hour intervals across all growth stages. Three plant water parameters, namely plant water content (PWC), canopy water content (CWC), and canopy equivalent water thickness (CEWT), were collected simultaneously. The results showed that canopy temperature and plant water parameters differed obviously among different irrigation treatments. The relative canopy temperature velocity (RCTV) was developed based on the temporal variance of the daily temperature, and the RCTV8–12 performed well in distinguishing different irrigation treatments and quantifying the rice water status. The coefficient of determination (R2) values of the exponential relationships between the optimal RCTV and plant water parameters reached 0.47 (PWC), 0.39 (CWC) and 0.18 (CEWT). The random forest model, which integrates the multi-temperature indices, achieved a good estimation for PWC (R2 = 0.78), CWC (R2 = 0.77), and CEWT (R2 = 0.64) across all growth stages. In summary, combining the multi-temperature indices derived from the thermal infrared imagery and machine learning algorithm can facilitate the non-destructive estimation of the rice water status and improve the precision irrigation schedule." @default.
- W4387113155 created "2023-09-28" @default.
- W4387113155 creator A5001892611 @default.
- W4387113155 creator A5017022122 @default.
- W4387113155 creator A5024615387 @default.
- W4387113155 creator A5031679314 @default.
- W4387113155 creator A5058913315 @default.
- W4387113155 creator A5071894027 @default.
- W4387113155 creator A5077986501 @default.
- W4387113155 creator A5080119274 @default.
- W4387113155 creator A5087174663 @default.
- W4387113155 date "2023-11-01" @default.
- W4387113155 modified "2023-10-06" @default.
- W4387113155 title "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice" @default.
- W4387113155 cites W1440267771 @default.
- W4387113155 cites W1961066620 @default.
- W4387113155 cites W1966854564 @default.
- W4387113155 cites W1982458287 @default.
- W4387113155 cites W1987026982 @default.
- W4387113155 cites W1991364445 @default.
- W4387113155 cites W1999761536 @default.
- W4387113155 cites W2007371340 @default.
- W4387113155 cites W2008939352 @default.
- W4387113155 cites W2012992943 @default.
- W4387113155 cites W2017243196 @default.
- W4387113155 cites W2019819424 @default.
- W4387113155 cites W2026637525 @default.
- W4387113155 cites W2029758641 @default.
- W4387113155 cites W2040403200 @default.
- W4387113155 cites W2041369789 @default.
- W4387113155 cites W2062472071 @default.
- W4387113155 cites W2064670135 @default.
- W4387113155 cites W2069214604 @default.
- W4387113155 cites W2078449698 @default.
- W4387113155 cites W2082627840 @default.
- W4387113155 cites W2112157943 @default.
- W4387113155 cites W2116033926 @default.
- W4387113155 cites W2116731171 @default.
- W4387113155 cites W2132223409 @default.
- W4387113155 cites W2139244996 @default.
- W4387113155 cites W2150355727 @default.
- W4387113155 cites W2152577762 @default.
- W4387113155 cites W2154083639 @default.
- W4387113155 cites W2160100711 @default.
- W4387113155 cites W2171063647 @default.
- W4387113155 cites W2224070395 @default.
- W4387113155 cites W2345431282 @default.
- W4387113155 cites W2483285127 @default.
- W4387113155 cites W2500826400 @default.
- W4387113155 cites W2501412768 @default.
- W4387113155 cites W2588710759 @default.
- W4387113155 cites W2589768243 @default.
- W4387113155 cites W2601985677 @default.
- W4387113155 cites W2614563231 @default.
- W4387113155 cites W2617056706 @default.
- W4387113155 cites W2743023164 @default.
- W4387113155 cites W2899271422 @default.
- W4387113155 cites W2937353161 @default.
- W4387113155 cites W3006705642 @default.
- W4387113155 cites W3010977907 @default.
- W4387113155 cites W3089862931 @default.
- W4387113155 cites W3097215655 @default.
- W4387113155 cites W3097222248 @default.
- W4387113155 cites W3115192128 @default.
- W4387113155 cites W3154189120 @default.
- W4387113155 cites W3155094018 @default.
- W4387113155 cites W3162348337 @default.
- W4387113155 cites W3175857751 @default.
- W4387113155 cites W3185810899 @default.
- W4387113155 cites W3202032854 @default.
- W4387113155 cites W3205357650 @default.
- W4387113155 cites W3209896702 @default.
- W4387113155 cites W4223898974 @default.
- W4387113155 cites W4281739866 @default.
- W4387113155 cites W4307298451 @default.
- W4387113155 doi "https://doi.org/10.1016/j.agwat.2023.108521" @default.
- W4387113155 hasPublicationYear "2023" @default.
- W4387113155 type Work @default.
- W4387113155 citedByCount "0" @default.
- W4387113155 crossrefType "journal-article" @default.
- W4387113155 hasAuthorship W4387113155A5001892611 @default.
- W4387113155 hasAuthorship W4387113155A5017022122 @default.
- W4387113155 hasAuthorship W4387113155A5024615387 @default.
- W4387113155 hasAuthorship W4387113155A5031679314 @default.
- W4387113155 hasAuthorship W4387113155A5058913315 @default.
- W4387113155 hasAuthorship W4387113155A5071894027 @default.
- W4387113155 hasAuthorship W4387113155A5077986501 @default.
- W4387113155 hasAuthorship W4387113155A5080119274 @default.
- W4387113155 hasAuthorship W4387113155A5087174663 @default.
- W4387113155 hasBestOaLocation W43871131551 @default.
- W4387113155 hasConcept C101000010 @default.
- W4387113155 hasConcept C105795698 @default.
- W4387113155 hasConcept C127313418 @default.
- W4387113155 hasConcept C127413603 @default.
- W4387113155 hasConcept C128990827 @default.
- W4387113155 hasConcept C159390177 @default.
- W4387113155 hasConcept C159750122 @default.
- W4387113155 hasConcept C176783924 @default.