Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387116103> ?p ?o ?g. }
- W4387116103 abstract "Artificial intelligence (AI) integration in nephropathology has been growing rapidly in recent years, facing several challenges including the wide range of histological techniques used, the low occurrence of certain diseases, and the need for data sharing. This narrative review retraces the history of AI in nephropathology and provides insights into potential future developments.Electronic searches in PubMed-MEDLINE and Embase were made to extract pertinent articles from the literature. Works about automated image analysis or the application of an AI algorithm on non-neoplastic kidney histological samples were included and analyzed to extract information such as publication year, AI task, and learning type. Prepublication servers and reviews were not included.Seventy-six (76) original research articles were selected. Most of the studies were conducted in the United States in the last 7 years. To date, research has been mainly conducted on relatively easy tasks, like single-stain glomerular segmentation. However, there is a trend towards developing more complex tasks such as glomerular multi-stain classification.Deep learning has been used to identify patterns in complex histopathology data and looks promising for the comprehensive assessment of renal biopsy, through the use of multiple stains and virtual staining techniques. Hybrid and collaborative learning approaches have also been explored to utilize large amounts of unlabeled data. A diverse team of experts, including nephropathologists, computer scientists, and clinicians, is crucial for the development of AI systems for nephropathology. Collaborative efforts among multidisciplinary experts result in clinically relevant and effective AI tools." @default.
- W4387116103 created "2023-09-29" @default.
- W4387116103 creator A5024711788 @default.
- W4387116103 creator A5025210432 @default.
- W4387116103 creator A5025279934 @default.
- W4387116103 creator A5044135100 @default.
- W4387116103 creator A5048500261 @default.
- W4387116103 creator A5048743157 @default.
- W4387116103 creator A5050786772 @default.
- W4387116103 creator A5061599954 @default.
- W4387116103 creator A5064277192 @default.
- W4387116103 creator A5065123106 @default.
- W4387116103 creator A5073052848 @default.
- W4387116103 creator A5085740219 @default.
- W4387116103 date "2023-09-28" @default.
- W4387116103 modified "2023-09-29" @default.
- W4387116103 title "Time for a full digital approach in nephropathology: a systematic review of current artificial intelligence applications and future directions" @default.
- W4387116103 cites W1966619881 @default.
- W4387116103 cites W1973615390 @default.
- W4387116103 cites W1979423827 @default.
- W4387116103 cites W2032819488 @default.
- W4387116103 cites W2057393404 @default.
- W4387116103 cites W2074964903 @default.
- W4387116103 cites W2136645517 @default.
- W4387116103 cites W2295947351 @default.
- W4387116103 cites W2552872100 @default.
- W4387116103 cites W2560438049 @default.
- W4387116103 cites W2588681363 @default.
- W4387116103 cites W2590235945 @default.
- W4387116103 cites W2592662298 @default.
- W4387116103 cites W2759868335 @default.
- W4387116103 cites W2768044711 @default.
- W4387116103 cites W2771464104 @default.
- W4387116103 cites W2884160046 @default.
- W4387116103 cites W2897685177 @default.
- W4387116103 cites W2914823990 @default.
- W4387116103 cites W2943370629 @default.
- W4387116103 cites W2952003460 @default.
- W4387116103 cites W2952527443 @default.
- W4387116103 cites W2971487518 @default.
- W4387116103 cites W2972214324 @default.
- W4387116103 cites W2994910508 @default.
- W4387116103 cites W3000897208 @default.
- W4387116103 cites W3002164240 @default.
- W4387116103 cites W3011545441 @default.
- W4387116103 cites W3011635649 @default.
- W4387116103 cites W3013525292 @default.
- W4387116103 cites W3013715913 @default.
- W4387116103 cites W3014372210 @default.
- W4387116103 cites W3030555654 @default.
- W4387116103 cites W3031062089 @default.
- W4387116103 cites W3043258610 @default.
- W4387116103 cites W3080677331 @default.
- W4387116103 cites W3098491829 @default.
- W4387116103 cites W3151740243 @default.
- W4387116103 cites W3154045578 @default.
- W4387116103 cites W3177094760 @default.
- W4387116103 cites W3185007781 @default.
- W4387116103 cites W3191728126 @default.
- W4387116103 cites W3212504472 @default.
- W4387116103 cites W3214204887 @default.
- W4387116103 cites W3215973731 @default.
- W4387116103 cites W3217644914 @default.
- W4387116103 cites W4200046102 @default.
- W4387116103 cites W4200081341 @default.
- W4387116103 cites W4205699867 @default.
- W4387116103 cites W4206460361 @default.
- W4387116103 cites W4220662059 @default.
- W4387116103 cites W4220936506 @default.
- W4387116103 cites W4224217689 @default.
- W4387116103 cites W4226075589 @default.
- W4387116103 cites W4226089562 @default.
- W4387116103 cites W4281264084 @default.
- W4387116103 cites W4281753398 @default.
- W4387116103 cites W4283208270 @default.
- W4387116103 cites W4285679076 @default.
- W4387116103 cites W4286816990 @default.
- W4387116103 cites W4312220066 @default.
- W4387116103 cites W4315629521 @default.
- W4387116103 cites W4320711822 @default.
- W4387116103 cites W4321489385 @default.
- W4387116103 doi "https://doi.org/10.1007/s40620-023-01775-w" @default.
- W4387116103 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37768550" @default.
- W4387116103 hasPublicationYear "2023" @default.
- W4387116103 type Work @default.
- W4387116103 citedByCount "0" @default.
- W4387116103 crossrefType "journal-article" @default.
- W4387116103 hasAuthorship W4387116103A5024711788 @default.
- W4387116103 hasAuthorship W4387116103A5025210432 @default.
- W4387116103 hasAuthorship W4387116103A5025279934 @default.
- W4387116103 hasAuthorship W4387116103A5044135100 @default.
- W4387116103 hasAuthorship W4387116103A5048500261 @default.
- W4387116103 hasAuthorship W4387116103A5048743157 @default.
- W4387116103 hasAuthorship W4387116103A5050786772 @default.
- W4387116103 hasAuthorship W4387116103A5061599954 @default.
- W4387116103 hasAuthorship W4387116103A5064277192 @default.
- W4387116103 hasAuthorship W4387116103A5065123106 @default.
- W4387116103 hasAuthorship W4387116103A5073052848 @default.
- W4387116103 hasAuthorship W4387116103A5085740219 @default.
- W4387116103 hasBestOaLocation W43871161031 @default.